This is the new AWS CloudFormation Template Reference Guide. Please update your bookmarks and links. For help getting started with CloudFormation, see the AWS CloudFormation User Guide.
AWS::SageMaker::StudioLifecycleConfig
Creates a new Amazon SageMaker AI Studio Lifecycle Configuration.
Syntax
To declare this entity in your AWS CloudFormation template, use the following syntax:
JSON
{ "Type" : "AWS::SageMaker::StudioLifecycleConfig", "Properties" : { "StudioLifecycleConfigAppType" :String, "StudioLifecycleConfigContent" :String, "StudioLifecycleConfigName" :String, "Tags" :[ Tag, ... ]} }
YAML
Type: AWS::SageMaker::StudioLifecycleConfig Properties: StudioLifecycleConfigAppType:StringStudioLifecycleConfigContent:StringStudioLifecycleConfigName:StringTags:- Tag
Properties
- StudioLifecycleConfigAppType
- 
                    The App type to which the Lifecycle Configuration is attached. Required: Yes Type: String Allowed values: JupyterServer | KernelGateway | CodeEditor | JupyterLabUpdate requires: Replacement 
- StudioLifecycleConfigContent
- Property description not available. - Required: Yes - Type: String - Pattern: - [\S\s]+- Minimum: - 1- Maximum: - 16384- Update requires: Replacement 
- StudioLifecycleConfigName
- 
                    The name of the Amazon SageMaker AI Studio Lifecycle Configuration. Required: Yes Type: String Pattern: ^[a-zA-Z0-9](-*[a-zA-Z0-9]){0,62}Minimum: 1Maximum: 63Update requires: Replacement 
- Property description not available. - Required: No - Type: Array of Tag - Minimum: - 0- Maximum: - 50- Update requires: Replacement 
Return values
Ref
Fn::GetAtt
- StudioLifecycleConfigArn
- 
                            The Amazon Resource Name (ARN) of the Lifecycle Configuration.