AWS CLI examples for Performance Insights - Amazon Aurora

AWS CLI examples for Performance Insights

In the following sections, learn more about the AWS Command Line Interface (AWS CLI) for Performance Insights and use AWS CLI examples.

Built-in help for the AWS CLI for Performance Insights

You can view Performance Insights data using the AWS CLI. You can view help for the AWS CLI commands for Performance Insights by entering the following on the command line.

aws pi help

If you don't have the AWS CLI installed, see Installing the AWS CLI in the AWS CLI User Guide for information about installing it.

Retrieving counter metrics

The following screenshot shows two counter metrics charts in the AWS Management Console.

Counter Metrics charts.

The following example shows how to gather the same data that the AWS Management Console uses to generate the two counter metric charts.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \ --service-type RDS \ --identifier db-ID \ --start-time 2018-10-30T00:00:00Z \ --end-time 2018-10-30T01:00:00Z \ --period-in-seconds 60 \ --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" }, {"Metric": "os.cpuUtilization.idle.avg"}]'

For Windows:

aws pi get-resource-metrics ^ --service-type RDS ^ --identifier db-ID ^ --start-time 2018-10-30T00:00:00Z ^ --end-time 2018-10-30T01:00:00Z ^ --period-in-seconds 60 ^ --metric-queries '[{"Metric": "os.cpuUtilization.user.avg" }, {"Metric": "os.cpuUtilization.idle.avg"}]'

You can also make a command easier to read by specifying a file for the --metrics-query option. The following example uses a file called query.json for the option. The file has the following contents.

[ { "Metric": "os.cpuUtilization.user.avg" }, { "Metric": "os.cpuUtilization.idle.avg" } ]

Run the following command to use the file.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \ --service-type RDS \ --identifier db-ID \ --start-time 2018-10-30T00:00:00Z \ --end-time 2018-10-30T01:00:00Z \ --period-in-seconds 60 \ --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^ --service-type RDS ^ --identifier db-ID ^ --start-time 2018-10-30T00:00:00Z ^ --end-time 2018-10-30T01:00:00Z ^ --period-in-seconds 60 ^ --metric-queries file://query.json

The preceding example specifies the following values for the options:

  • --service-typeRDS for Amazon RDS

  • --identifier – The resource ID for the DB instance

  • --start-time and --end-time – The ISO 8601 DateTime values for the period to query, with multiple supported formats

It queries for a one-hour time range:

  • --period-in-seconds60 for a per-minute query

  • --metric-queries – An array of two queries, each just for one metric.

    The metric name uses dots to classify the metric in a useful category, with the final element being a function. In the example, the function is avg for each query. As with Amazon CloudWatch, the supported functions are min, max, total, and avg.

The response looks similar to the following.

{ "Identifier": "db-XXX", "AlignedStartTime": 1540857600.0, "AlignedEndTime": 1540861200.0, "MetricList": [ { //A list of key/datapoints "Key": { "Metric": "os.cpuUtilization.user.avg" //Metric1 }, "DataPoints": [ //Each list of datapoints has the same timestamps and same number of items { "Timestamp": 1540857660.0, //Minute1 "Value": 4.0 }, { "Timestamp": 1540857720.0, //Minute2 "Value": 4.0 }, { "Timestamp": 1540857780.0, //Minute 3 "Value": 10.0 } //... 60 datapoints for the os.cpuUtilization.user.avg metric ] }, { "Key": { "Metric": "os.cpuUtilization.idle.avg" //Metric2 }, "DataPoints": [ { "Timestamp": 1540857660.0, //Minute1 "Value": 12.0 }, { "Timestamp": 1540857720.0, //Minute2 "Value": 13.5 }, //... 60 datapoints for the os.cpuUtilization.idle.avg metric ] } ] //end of MetricList } //end of response

The response has an Identifier, AlignedStartTime, and AlignedEndTime. B the --period-in-seconds value was 60, the start and end times have been aligned to the minute. If the --period-in-seconds was 3600, the start and end times would have been aligned to the hour.

The MetricList in the response has a number of entries, each with a Key and a DataPoints entry. Each DataPoint has a Timestamp and a Value. Each Datapoints list has 60 data points because the queries are for per-minute data over an hour, with Timestamp1/Minute1, Timestamp2/Minute2, and so on, up to Timestamp60/Minute60.

Because the query is for two different counter metrics, there are two elements in the response MetricList.

Retrieving the DB load average for top wait events

The following example is the same query that the AWS Management Console uses to generate a stacked area line graph. This example retrieves the db.load.avg for the last hour with load divided according to the top seven wait events. The command is the same as the command in Retrieving counter metrics. However, the query.json file has the following contents.

[ { "Metric": "db.load.avg", "GroupBy": { "Group": "db.wait_event", "Limit": 7 } } ]

Run the following command.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \ --service-type RDS \ --identifier db-ID \ --start-time 2018-10-30T00:00:00Z \ --end-time 2018-10-30T01:00:00Z \ --period-in-seconds 60 \ --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^ --service-type RDS ^ --identifier db-ID ^ --start-time 2018-10-30T00:00:00Z ^ --end-time 2018-10-30T01:00:00Z ^ --period-in-seconds 60 ^ --metric-queries file://query.json

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events. For details about valid values for this example, see DimensionGroup in the Performance Insights API Reference.

The response looks similar to the following.

{ "Identifier": "db-XXX", "AlignedStartTime": 1540857600.0, "AlignedEndTime": 1540861200.0, "MetricList": [ { //A list of key/datapoints "Key": { //A Metric with no dimensions. This is the total db.load.avg "Metric": "db.load.avg" }, "DataPoints": [ //Each list of datapoints has the same timestamps and same number of items { "Timestamp": 1540857660.0, //Minute1 "Value": 0.5166666666666667 }, { "Timestamp": 1540857720.0, //Minute2 "Value": 0.38333333333333336 }, { "Timestamp": 1540857780.0, //Minute 3 "Value": 0.26666666666666666 } //... 60 datapoints for the total db.load.avg key ] }, { "Key": { //Another key. This is db.load.avg broken down by CPU "Metric": "db.load.avg", "Dimensions": { "db.wait_event.name": "CPU", "db.wait_event.type": "CPU" } }, "DataPoints": [ { "Timestamp": 1540857660.0, //Minute1 "Value": 0.35 }, { "Timestamp": 1540857720.0, //Minute2 "Value": 0.15 }, //... 60 datapoints for the CPU key ] }, //... In total we have 8 key/datapoints entries, 1) total, 2-8) Top Wait Events ] //end of MetricList } //end of response

In this response, there are eight entries in the MetricList. There is one entry for the total db.load.avg, and seven entries each for the db.load.avg divided according to one of the top seven wait events. Unlike in the first example, because there was a grouping dimension, there must be one key for each grouping of the metric. There can't be only one key for each metric, as in the basic counter metric use case.

Retrieving the DB load average for top SQL

The following example groups db.wait_events by the top 10 SQL statements. There are two different groups for SQL statements:

  • db.sql – The full SQL statement, such as select * from customers where customer_id = 123

  • db.sql_tokenized – The tokenized SQL statement, such as select * from customers where customer_id = ?

When analyzing database performance, it can be useful to consider SQL statements that only differ by their parameters as one logic item. So, you can use db.sql_tokenized when querying. However, especially when you're interested in explain plans, sometimes it's more useful to examine full SQL statements with parameters, and query grouping by db.sql. There is a parent-child relationship between tokenized and full SQL, with multiple full SQL (children) grouped under the same tokenized SQL (parent).

The command in this example is the similar to the command in Retrieving the DB load average for top wait events. However, the query.json file has the following contents.

[ { "Metric": "db.load.avg", "GroupBy": { "Group": "db.sql_tokenized", "Limit": 10 } } ]

The following example uses db.sql_tokenized.

For Linux, macOS, or Unix:

aws pi get-resource-metrics \ --service-type RDS \ --identifier db-ID \ --start-time 2018-10-29T00:00:00Z \ --end-time 2018-10-30T00:00:00Z \ --period-in-seconds 3600 \ --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^ --service-type RDS ^ --identifier db-ID ^ --start-time 2018-10-29T00:00:00Z ^ --end-time 2018-10-30T00:00:00Z ^ --period-in-seconds 3600 ^ --metric-queries file://query.json

This example queries over 24 hours, with a one hour period-in-seconds.

The example specifies the metric of db.load.avg and a GroupBy of the top seven wait events. For details about valid values for this example, see DimensionGroup in the Performance Insights API Reference.

The response looks similar to the following.

{ "AlignedStartTime": 1540771200.0, "AlignedEndTime": 1540857600.0, "Identifier": "db-XXX", "MetricList": [ //11 entries in the MetricList { "Key": { //First key is total "Metric": "db.load.avg" } "DataPoints": [ //Each DataPoints list has 24 per-hour Timestamps and a value { "Value": 1.6964980544747081, "Timestamp": 1540774800.0 }, //... 24 datapoints ] }, { "Key": { //Next key is the top tokenized SQL "Dimensions": { "db.sql_tokenized.statement": "INSERT INTO authors (id,name,email) VALUES\n( nextval(?) ,?,?)", "db.sql_tokenized.db_id": "pi-2372568224", "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE" }, "Metric": "db.load.avg" }, "DataPoints": [ //... 24 datapoints ] }, // In total 11 entries, 10 Keys of top tokenized SQL, 1 total key ] //End of MetricList } //End of response

This response has 11 entries in the MetricList (1 total, 10 top tokenized SQL), with each entry having 24 per-hour DataPoints.

For tokenized SQL, there are three entries in each dimensions list:

  • db.sql_tokenized.statement – The tokenized SQL statement.

  • db.sql_tokenized.db_id – Either the native database ID used to refer to the SQL, or a synthetic ID that Performance Insights generates for you if the native database ID isn't available. This example returns the pi-2372568224 synthetic ID.

  • db.sql_tokenized.id – The ID of the query inside Performance Insights.

    In the AWS Management Console, this ID is called the Support ID. It's named this because the ID is data that AWS Support can examine to help you troubleshoot an issue with your database. AWS takes the security and privacy of your data extremely seriously, and almost all data is stored encrypted with your AWS KMS key. Therefore, nobody inside AWS can look at this data. In the example preceding, both the tokenized.statement and the tokenized.db_id are stored encrypted. If you have an issue with your database, AWS Support can help you by referencing the Support ID.

When querying, it might be convenient to specify a Group in GroupBy. However, for finer-grained control over the data that's returned, specify the list of dimensions. For example, if all that is needed is the db.sql_tokenized.statement, then a Dimensions attribute can be added to the query.json file.

[ { "Metric": "db.load.avg", "GroupBy": { "Group": "db.sql_tokenized", "Dimensions":["db.sql_tokenized.statement"], "Limit": 10 } } ]

Retrieving the DB load average filtered by SQL

Filter by SQL chart.

The preceding image shows that a particular query is selected, and the top average active sessions stacked area line graph is scoped to that query. Although the query is still for the top seven overall wait events, the value of the response is filtered. The filter causes it to take into account only sessions that are a match for the particular filter.

The corresponding API query in this example is similar to the command in Retrieving the DB load average for top SQL. However, the query.json file has the following contents.

[ { "Metric": "db.load.avg", "GroupBy": { "Group": "db.wait_event", "Limit": 5 }, "Filter": { "db.sql_tokenized.id": "AKIAIOSFODNN7EXAMPLE" } } ]

For Linux, macOS, or Unix:

aws pi get-resource-metrics \ --service-type RDS \ --identifier db-ID \ --start-time 2018-10-30T00:00:00Z \ --end-time 2018-10-30T01:00:00Z \ --period-in-seconds 60 \ --metric-queries file://query.json

For Windows:

aws pi get-resource-metrics ^ --service-type RDS ^ --identifier db-ID ^ --start-time 2018-10-30T00:00:00Z ^ --end-time 2018-10-30T01:00:00Z ^ --period-in-seconds 60 ^ --metric-queries file://query.json

The response looks similar to the following.

{ "Identifier": "db-XXX", "AlignedStartTime": 1556215200.0, "MetricList": [ { "Key": { "Metric": "db.load.avg" }, "DataPoints": [ { "Timestamp": 1556218800.0, "Value": 1.4878117913832196 }, { "Timestamp": 1556222400.0, "Value": 1.192823803967328 } ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.type": "io", "db.wait_event.name": "wait/io/aurora_redo_log_flush" } }, "DataPoints": [ { "Timestamp": 1556218800.0, "Value": 1.1360544217687074 }, { "Timestamp": 1556222400.0, "Value": 1.058051341890315 } ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.type": "io", "db.wait_event.name": "wait/io/table/sql/handler" } }, "DataPoints": [ { "Timestamp": 1556218800.0, "Value": 0.16241496598639457 }, { "Timestamp": 1556222400.0, "Value": 0.05163360560093349 } ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.type": "synch", "db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex" } }, "DataPoints": [ { "Timestamp": 1556218800.0, "Value": 0.11479591836734694 }, { "Timestamp": 1556222400.0, "Value": 0.013127187864644107 } ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.type": "CPU", "db.wait_event.name": "CPU" } }, "DataPoints": [ { "Timestamp": 1556218800.0, "Value": 0.05215419501133787 }, { "Timestamp": 1556222400.0, "Value": 0.05805134189031505 } ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.type": "synch", "db.wait_event.name": "wait/synch/mutex/innodb/lock_wait_mutex" } }, "DataPoints": [ { "Timestamp": 1556218800.0, "Value": 0.017573696145124718 }, { "Timestamp": 1556222400.0, "Value": 0.002333722287047841 } ] } ], "AlignedEndTime": 1556222400.0 } //end of response

In this response, all values are filtered according to the contribution of tokenized SQL AKIAIOSFODNN7EXAMPLE specified in the query.json file. The keys also might follow a different order than a query without a filter, because it's the top five wait events that affected the filtered SQL.

Retrieving the full text of a SQL statement

The following example retrieves the full text of a SQL statement for DB instance db-10BCD2EFGHIJ3KL4M5NO6PQRS5. The --group is db.sql, and the --group-identifier is db.sql.id. In this example, my-sql-id represents a SQL ID retrieved by invoking pi get-resource-metrics or pi describe-dimension-keys.

Run the following command.

For Linux, macOS, or Unix:

aws pi get-dimension-key-details \ --service-type RDS \ --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 \ --group db.sql \ --group-identifier my-sql-id \ --requested-dimensions statement

For Windows:

aws pi get-dimension-key-details ^ --service-type RDS ^ --identifier db-10BCD2EFGHIJ3KL4M5NO6PQRS5 ^ --group db.sql ^ --group-identifier my-sql-id ^ --requested-dimensions statement

In this example, the dimensions details are available. Thus, Performance Insights retrieves the full text of the SQL statement, without truncating it.

{ "Dimensions":[ { "Value": "SELECT e.last_name, d.department_name FROM employees e, departments d WHERE e.department_id=d.department_id", "Dimension": "db.sql.statement", "Status": "AVAILABLE" }, ... ] }

Creating a performance analysis report for a time period

The following example creates a performance analysis report with the 1682969503 start time and 1682979503 end time for the db-loadtest-0 database.

aws pi create-performance-analysis-report \ --service-type RDS \ --identifier db-loadtest-0 \ --start-time 1682969503 \ --end-time 1682979503 \ --region us-west-2

The response is the unique identifier report-0234d3ed98e28fb17 for the report.

{ "AnalysisReportId": "report-0234d3ed98e28fb17" }

Retrieving a performance analysis report

The following example retrieves the analysis report details for the report-0d99cc91c4422ee61 report.

aws pi get-performance-analysis-report \ --service-type RDS \ --identifier db-loadtest-0 \ --analysis-report-id report-0d99cc91c4422ee61 \ --region us-west-2

The response provides the report status, ID, time details, and insights.

{ "AnalysisReport": { "Status": "Succeeded", "ServiceType": "RDS", "Identifier": "db-loadtest-0", "StartTime": 1680583486.584, "AnalysisReportId": "report-0d99cc91c4422ee61", "EndTime": 1680587086.584, "CreateTime": 1680587087.139, "Insights": [ ... (Condensed for space) ] } }

Listing all the performance analysis reports for the DB instance

The following example lists all the available performance analysis reports for the db-loadtest-0 database.

aws pi list-performance-analysis-reports \ --service-type RDS \ --identifier db-loadtest-0 \ --region us-west-2

The response lists all the reports with the report ID, status, and time period details.

{ "AnalysisReports": [ { "Status": "Succeeded", "EndTime": 1680587086.584, "CreationTime": 1680587087.139, "StartTime": 1680583486.584, "AnalysisReportId": "report-0d99cc91c4422ee61" }, { "Status": "Succeeded", "EndTime": 1681491137.914, "CreationTime": 1681491145.973, "StartTime": 1681487537.914, "AnalysisReportId": "report-002633115cc002233" }, { "Status": "Succeeded", "EndTime": 1681493499.849, "CreationTime": 1681493507.762, "StartTime": 1681489899.849, "AnalysisReportId": "report-043b1e006b47246f9" }, { "Status": "InProgress", "EndTime": 1682979503.0, "CreationTime": 1682979618.994, "StartTime": 1682969503.0, "AnalysisReportId": "report-01ad15f9b88bcbd56" } ] }

Deleting a performance analysis report

The following example deletes the analysis report for the db-loadtest-0 database.

aws pi delete-performance-analysis-report \ --service-type RDS \ --identifier db-loadtest-0 \ --analysis-report-id report-0d99cc91c4422ee61 \ --region us-west-2

Adding tag to a performance analysis report

The following example adds a tag with a key name and value test-tag to the report-01ad15f9b88bcbd56 report.

aws pi tag-resource \ --service-type RDS \ --resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/report-01ad15f9b88bcbd56 \ --tags Key=name,Value=test-tag \ --region us-west-2

Listing all the tags for a performance analysis report

The following example lists all the tags for the report-01ad15f9b88bcbd56 report.

aws pi list-tags-for-resource \ --service-type RDS \ --resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/report-01ad15f9b88bcbd56 \ --region us-west-2

The response lists the value and key for all the tags added to the report:

{ "Tags": [ { "Value": "test-tag", "Key": "name" } ] }

Deleting tags from a performance analysis report

The following example deletes the name tag from the report-01ad15f9b88bcbd56 report.

aws pi untag-resource \ --service-type RDS \ --resource-arn arn:aws:pi:us-west-2:356798100956:perf-reports/RDS/db-loadtest-0/report-01ad15f9b88bcbd56 \ --tag-keys name \ --region us-west-2

After the tag is deleted, calling the list-tags-for-resource API doesn't list this tag.