AWS AppSync JavaScript resolver function reference for Amazon RDS - AWS AppSync GraphQL

AWS AppSync JavaScript resolver function reference for Amazon RDS

The AWS AppSync RDS function and resolver allows developers to send SQL queries to an Amazon Aurora cluster database using the RDS Data API and get back the result of these queries. You can write SQL statements that are sent to the Data API by using AWS AppSync's rds module sql-tagged template or by using the rds module's select, insert, update, and remove helper functions. AWS AppSync utilizes the RDS Data Service's ExecuteStatement action to run SQL statements against the database.

SQL tagged template

AWS AppSync's sql tagged template enables you to create a static statement that can receive dynamic values at runtime by using template expressions. AWS AppSync builds a variable map from the expression values to construct a SqlParameterized query that is sent to the Amazon Aurora Serverless Data API. With this method, it isn't possible for dynamic values passed at run time to modify the original statement, which could cause unintented execution. All dynamic values are passed as parameters, can't modify the original statement, and aren't executed by the database. This makes your query less vulnerable to SQL injection attacks.

Note

In all cases, when writing SQL statements, you should follow security guidelines to properly handle data that you receive as input.

Note

The sql tagged template only supports passing variable values. You can't use an expression to dynamically specify the column or table names. However, you can use utility functions to build dynamic statements.

In the following example, we create a query that filters based on the value of the col argument that is set dynamically in the GraphQL query at run time. The value can only be added to the statement using the tag expression:

import { sql, createMySQLStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { const query = sql` SELECT * FROM table WHERE column = ${ctx.args.col}` ; return createMySQLStatement(query); }

By passing all dynamic values through the variable map, we rely on the database engine to securely handle and sanitize values.

Creating statements

Functions and resolvers can interact with MySQL and PostgreSQL databases. Use createMySQLStatement and createPgStatement respectively to build statements. For example, createMySQLStatement can create a MySQL query. These functions accept up to two statements, useful when a request should retrieve results immediately. With MySQL, you could do:

import { sql, createMySQLStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { const { id, text } = ctx.args; const s1 = sql`insert into Post(id, text) values(${id}, ${text})`; const s2 = sql`select * from Post where id = ${id}`; return createMySQLStatement(s1, s2); }
Note

createPgStatement and createMySQLStatement does not escape or quote statements built with the sql tagged template.

Retrieving data

The result of your executed SQL statement is available in your response handler in the context.result object. The result is a JSON string with the response elements from the ExecuteStatement action. When parsed, the result has the following shape:

type SQLStatementResults = { sqlStatementResults: { records: any[]; columnMetadata: any[]; numberOfRecordsUpdated: number; generatedFields?: any[] }[] }

You can use the toJsonObject utility to transform the result into a list of JSON objects representing the returned rows. For example:

import { toJsonObject } from '@aws-appsync/utils/rds'; export function response(ctx) { const { error, result } = ctx; if (error) { return util.appendError( error.message, error.type, result ) } return toJsonObject(result)[1][0] }

Note that toJsonObject returns an array of statement results. If you provided one statement, the array length is 1. If you provided two statements, the array length is 2. Each result in the array contains 0 or more rows. toJsonObject returns null if the result value is invalid or unexpected.

Utility functions

You can use the AWS AppSync RDS module's utility helpers to interact with your database.

The select utility creates a SELECT statement to query your relational database.

Basic use

In its basic form, you can specify the table you want to query:

import { select, createPgStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { // Generates statement: // "SELECT * FROM "persons" return createPgStatement(select({table: 'persons'})); }

Note that you can also specify the schema in your table identifier:

import { select, createPgStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { // Generates statement: // SELECT * FROM "private"."persons" return createPgStatement(select({table: 'private.persons'})); }

Specifying columns

You can specify columns with the columns property. If this isn't set to a value, it defaults to *:

export function request(ctx) { // Generates statement: // SELECT "id", "name" // FROM "persons" return createPgStatement(select({ table: 'persons', columns: ['id', 'name'] })); }

You can specify a column's table as well:

export function request(ctx) { // Generates statement: // SELECT "id", "persons"."name" // FROM "persons" return createPgStatement(select({ table: 'persons', columns: ['id', 'persons.name'] })); }

Limits and offsets

You can apply limit and offset to the query:

export function request(ctx) { // Generates statement: // SELECT "id", "name" // FROM "persons" // LIMIT :limit // OFFSET :offset return createPgStatement(select({ table: 'persons', columns: ['id', 'name'], limit: 10, offset: 40 })); }

Order By

You can sort your results with the orderBy property. Provide an array of objects specifying the column and an optional dir property:

export function request(ctx) { // Generates statement: // SELECT "id", "name" FROM "persons" // ORDER BY "name", "id" DESC return createPgStatement(select({ table: 'persons', columns: ['id', 'name'], orderBy: [{column: 'name'}, {column: 'id', dir: 'DESC'}] })); }

Filters

You can build filters by using the special condition object:

export function request(ctx) { // Generates statement: // SELECT "id", "name" // FROM "persons" // WHERE "name" = :NAME return createPgStatement(select({ table: 'persons', columns: ['id', 'name'], where: {name: {eq: 'Stephane'}} })); }

You can also combine filters:

export function request(ctx) { // Generates statement: // SELECT "id", "name" // FROM "persons" // WHERE "name" = :NAME and "id" > :ID return createPgStatement(select({ table: 'persons', columns: ['id', 'name'], where: {name: {eq: 'Stephane'}, id: {gt: 10}} })); }

You can also create OR statements:

export function request(ctx) { // Generates statement: // SELECT "id", "name" // FROM "persons" // WHERE "name" = :NAME OR "id" > :ID return createPgStatement(select({ table: 'persons', columns: ['id', 'name'], where: { or: [ { name: { eq: 'Stephane'} }, { id: { gt: 10 } } ]} })); }

You can also negate a condition with not:

export function request(ctx) { // Generates statement: // SELECT "id", "name" // FROM "persons" // WHERE NOT ("name" = :NAME AND "id" > :ID) return createPgStatement(select({ table: 'persons', columns: ['id', 'name'], where: { not: [ { name: { eq: 'Stephane'} }, { id: { gt: 10 } } ]} })); }

You can also use the following operators to compare values:

Operator Description Possible value types
eq Equal number, string, boolean
ne Not equal number, string, boolean
le Less than or equal number, string
lt Less than number, string
ge Greater than or equal number, string
gt Greater than number, string
contains Like string
notContains Not like string
beginsWith Starts with prefix string
between Between two values number, string
attributeExists The attribute is not null number, string, boolean
size checks the length of the element string

The insert utility provides a straightforward way of inserting single row items in your database with the INSERT operation.

Single item insertions

To insert an item, specify the table and then pass in your object of values. The object keys are mapped to your table columns. Columns names are automatically escaped, and values are sent to the database using the variable map:

import { insert, createMySQLStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { const { input: values } = ctx.args; const insertStatement = insert({ table: 'persons', values }); // Generates statement: // INSERT INTO `persons`(`name`) // VALUES(:NAME) return createMySQLStatement(insertStatement) }

MySQL use case

You can combine an insert followed by a select to retrieve your inserted row:

import { insert, select, createMySQLStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { const { input: values } = ctx.args; const insertStatement = insert({ table: 'persons', values }); const selectStatement = select({ table: 'persons', columns: '*', where: { id: { eq: values.id } }, limit: 1, }); // Generates statement: // INSERT INTO `persons`(`name`) // VALUES(:NAME) // and // SELECT * // FROM `persons` // WHERE `id` = :ID return createMySQLStatement(insertStatement, selectStatement) }

Postgres use case

With Postgres, you can use returning to obtain data from the row that you inserted. It accepts * or an array of column names:

import { insert, createPgStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { const { input: values } = ctx.args; const insertStatement = insert({ table: 'persons', values, returning: '*' }); // Generates statement: // INSERT INTO "persons"("name") // VALUES(:NAME) // RETURNING * return createPgStatement(insertStatement) }

The update utility allows you to update existing rows. You can use the condition object to apply changes to the specified columns in all the rows that satisfy the condition. For example, let's say we have a schema that allows us to make this mutation. We want to update the name of Person with the id value of 3 but only if we've known them (known_since) since the year 2000:

mutation Update { updatePerson( input: {id: 3, name: "Jon"}, condition: {known_since: {ge: "2000"}} ) { id name } }

Our update resolver looks like this:

import { update, createPgStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { const { input: { id, ...values }, condition } = ctx.args; const where = { ...condition, id: { eq: id }, }; const updateStatement = update({ table: 'persons', values, where, returning: ['id', 'name'], }); // Generates statement: // UPDATE "persons" // SET "name" = :NAME, "birthday" = :BDAY, "country" = :COUNTRY // WHERE "id" = :ID // RETURNING "id", "name" return createPgStatement(updateStatement) }

We can add a check to our condition to make sure that only the row that has the primary key id equal to 3 is updated. Similarly, for Postgres inserts, you can use returning to return the modified data.

The remove utility allows you to delete existing rows. You can use the condition object on all rows that satisfy the condition. Note that delete is a reserved keyword in JavaScript. remove should be used instead:

import { remove, createPgStatement } from '@aws-appsync/utils/rds'; export function request(ctx) { const { input: { id }, condition } = ctx.args; const where = { ...condition, id: { eq: id } }; const deleteStatement = remove({ table: 'persons', where, returning: ['id', 'name'], }); // Generates statement: // DELETE "persons" // WHERE "id" = :ID // RETURNING "id", "name" return createPgStatement(updateStatement) }

Casting

In some cases, you may want more specificity about the correct object type to use in your statement. You can use the provided type hints to specify the type of your parameters. AWS AppSync supports the same type hints as the Data API. You can cast your parameters by using the typeHint functions from the AWS AppSync rds module.

The following example allows you to send an array as a value that is casted as a JSON object. We use the -> operator to retrieve the element at the index 2 in the JSON array:

import { sql, createPgStatement, toJsonObject, typeHint } from '@aws-appsync/utils/rds'; export function request(ctx) { const arr = ctx.args.list_of_ids const statement = sql`select ${typeHint.JSON(arr)}->2 as value` return createPgStatement(statement) } export function response(ctx) { return toJsonObject(ctx.result)[0][0].value }

Casting is also useful when handling and comparing DATE, TIME, and TIMESTAMP:

import { select, createPgStatement, typeHint } from '@aws-appsync/utils/rds'; export function request(ctx) { const when = ctx.args.when const statement = select({ table: 'persons', where: { createdAt : { gt: typeHint.DATETIME(when) } } }) return createPgStatement(statement) }

Here's another example showing how you can send the current date and time:

import { sql, createPgStatement, typeHint } from '@aws-appsync/utils/rds'; export function request(ctx) { const now = util.time.nowFormatted('YYYY-MM-dd HH:mm:ss') return createPgStatement(sql`select ${typeHint.TIMESTAMP(now)}`) }

Available type hints

  • typeHint.DATE - The corresponding parameter is sent as an object of the DATE type to the database. The accepted format is YYYY-MM-DD.

  • typeHint.DECIMAL - The corresponding parameter is sent as an object of the DECIMAL type to the database.

  • typeHint.JSON - The corresponding parameter is sent as an object of the JSON type to the database.

  • typeHint.TIME - The corresponding string parameter value is sent as an object of the TIME type to the database. The accepted format is HH:MM:SS[.FFF].

  • typeHint.TIMESTAMP - The corresponding string parameter value is sent as an object of the TIMESTAMP type to the database. The accepted format is YYYY-MM-DD HH:MM:SS[.FFF].

  • typeHint.UUID - The corresponding string parameter value is sent as an object of the UUID type to the database.