Invoke Mistral AI models on Amazon Bedrock using the Invoke Model API with a response stream - Amazon Bedrock

Invoke Mistral AI models on Amazon Bedrock using the Invoke Model API with a response stream

The following code examples show how to send a text message to Mistral AI models, using the Invoke Model API, and print the response stream.

.NET
AWS SDK for .NET
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Mistral // and print the response stream. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USEast1); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Mistral's instruction format. var formattedPrompt = $"<s>[INST] {prompt} [/INST]"; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = formattedPrompt, max_tokens = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelWithResponseStreamRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var streamingResponse = await client.InvokeModelWithResponseStreamAsync(request); // Extract and print the streamed response text in real-time. foreach (var item in streamingResponse.Body) { var chunk = JsonSerializer.Deserialize<JsonObject>((item as PayloadPart).Bytes); var text = chunk["outputs"]?[0]?["text"] ?? ""; Console.Write(text); } } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
Java
SDK for Java 2.x
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

// Use the native inference API to send a text message to Mistral // and print the response stream. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamRequest; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler; import java.util.concurrent.ExecutionException; import static software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler.Visitor; public class InvokeModelWithResponseStream { public static String invokeModelWithResponseStream() throws ExecutionException, InterruptedException { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // The InvokeModelWithResponseStream API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral-text-completion.html var nativeRequestTemplate = "{ \"prompt\": \"{{instruction}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Mistral's instruction format. var instruction = "<s>[INST] {{prompt}} [/INST]\\n".replace("{{prompt}}", prompt); // Embed the instruction in the the native request payload. var nativeRequest = nativeRequestTemplate.replace("{{instruction}}", instruction); // Create a request with the model ID and the model's native request payload. var request = InvokeModelWithResponseStreamRequest.builder() .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) .build(); // Prepare a buffer to accumulate the generated response text. var completeResponseTextBuffer = new StringBuilder(); // Prepare a handler to extract, accumulate, and print the response text in real-time. var responseStreamHandler = InvokeModelWithResponseStreamResponseHandler.builder() .subscriber(Visitor.builder().onChunk(chunk -> { // Extract and print the text from the model's native response. var response = new JSONObject(chunk.bytes().asUtf8String()); var text = new JSONPointer("/outputs/0/text").queryFrom(response); System.out.print(text); // Append the text to the response text buffer. completeResponseTextBuffer.append(text); }).build()).build(); try { // Send the request and wait for the handler to process the response. client.invokeModelWithResponseStream(request, responseStreamHandler).get(); // Return the complete response text. return completeResponseTextBuffer.toString(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) throws ExecutionException, InterruptedException { invokeModelWithResponseStream(); } }
Python
SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Use the Invoke Model API to send a text message and process the response stream in real-time.

# Use the native inference API to send a text message to Mistral # and print the response stream. import boto3 import json from botocore.exceptions import ClientError # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Mistral Large. model_id = "mistral.mistral-large-2402-v1:0" # Define the prompt for the model. prompt = "Describe the purpose of a 'hello world' program in one line." # Embed the prompt in Mistral's instruction format. formatted_prompt = f"<s>[INST] {prompt} [/INST]" # Format the request payload using the model's native structure. native_request = { "prompt": formatted_prompt, "max_tokens": 512, "temperature": 0.5, } # Convert the native request to JSON. request = json.dumps(native_request) try: # Invoke the model with the request. streaming_response = client.invoke_model_with_response_stream( modelId=model_id, body=request ) # Extract and print the response text in real-time. for event in streaming_response["body"]: chunk = json.loads(event["chunk"]["bytes"]) if "outputs" in chunk: print(chunk["outputs"][0].get("text"), end="") except (ClientError, Exception) as e: print(f"ERROR: Can't invoke '{model_id}''. Reason: {e}") exit(1)

For a complete list of AWS SDK developer guides and code examples, see Using Amazon Bedrock with an AWS SDK. This topic also includes information about getting started and details about previous SDK versions.