The following examples show you how to use the Converse
and ConverseStream
operations.
This example shows how to call the Converse
operation with the
Anthropic Claude 3 Sonnet model. The example shows how to
send the input text, inference parameters, and additional parameters that are unique
to the model. The code starts a conversation by asking the model to create a list of
songs. It then continues the conversation by asking that the songs are by artists
from the United Kingdom.
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
"""
Shows how to use the <noloc>Converse</noloc> API with Anthropic Claude 3 Sonnet (on demand).
"""
import logging
import boto3
from botocore.exceptions import ClientError
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def generate_conversation(bedrock_client,
model_id,
system_prompts,
messages):
"""
Sends messages to a model.
Args:
bedrock_client: The Boto3 Bedrock runtime client.
model_id (str): The model ID to use.
system_prompts (JSON) : The system prompts for the model to use.
messages (JSON) : The messages to send to the model.
Returns:
response (JSON): The conversation that the model generated.
"""
logger.info("Generating message with model %s", model_id)
# Inference parameters to use.
temperature = 0.5
top_k = 200
# Base inference parameters to use.
inference_config = {"temperature": temperature}
# Additional inference parameters to use.
additional_model_fields = {"top_k": top_k}
# Send the message.
response = bedrock_client.converse(
modelId=model_id,
messages=messages,
system=system_prompts,
inferenceConfig=inference_config,
additionalModelRequestFields=additional_model_fields
)
# Log token usage.
token_usage = response['usage']
logger.info("Input tokens: %s", token_usage['inputTokens'])
logger.info("Output tokens: %s", token_usage['outputTokens'])
logger.info("Total tokens: %s", token_usage['totalTokens'])
logger.info("Stop reason: %s", response['stopReason'])
return response
def main():
"""
Entrypoint for Anthropic Claude 3 Sonnet example.
"""
logging.basicConfig(level=logging.INFO,
format="%(levelname)s: %(message)s")
model_id = "anthropic.claude-3-sonnet-20240229-v1:0"
# Setup the system prompts and messages to send to the model.
system_prompts = [{"text": "You are an app that creates playlists for a radio station that plays rock and pop music. Only return song names and the artist."}]
message_1 = {
"role": "user",
"content": [{"text": "Create a list of 3 pop songs."}]
}
message_2 = {
"role": "user",
"content": [{"text": "Make sure the songs are by artists from the United Kingdom."}]
}
messages = []
try:
bedrock_client = boto3.client(service_name='bedrock-runtime')
# Start the conversation with the 1st message.
messages.append(message_1)
response = generate_conversation(
bedrock_client, model_id, system_prompts, messages)
# Add the response message to the conversation.
output_message = response['output']['message']
messages.append(output_message)
# Continue the conversation with the 2nd message.
messages.append(message_2)
response = generate_conversation(
bedrock_client, model_id, system_prompts, messages)
output_message = response['output']['message']
messages.append(output_message)
# Show the complete conversation.
for message in messages:
print(f"Role: {message['role']}")
for content in message['content']:
print(f"Text: {content['text']}")
print()
except ClientError as err:
message = err.response['Error']['Message']
logger.error("A client error occurred: %s", message)
print(f"A client error occured: {message}")
else:
print(
f"Finished generating text with model {model_id}.")
if __name__ == "__main__":
main()