CfnClusterCapacityProviderAssociations
- class aws_cdk.aws_ecs.CfnClusterCapacityProviderAssociations(scope, id, *, capacity_providers, cluster, default_capacity_provider_strategy)
Bases:
CfnResource
A CloudFormation
AWS::ECS::ClusterCapacityProviderAssociations
.The
AWS::ECS::ClusterCapacityProviderAssociations
resource associates one or more capacity providers and a default capacity provider strategy with a cluster.- CloudformationResource:
AWS::ECS::ClusterCapacityProviderAssociations
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_ecs as ecs cfn_cluster_capacity_provider_associations = ecs.CfnClusterCapacityProviderAssociations(self, "MyCfnClusterCapacityProviderAssociations", capacity_providers=["capacityProviders"], cluster="cluster", default_capacity_provider_strategy=[ecs.CfnClusterCapacityProviderAssociations.CapacityProviderStrategyProperty( capacity_provider="capacityProvider", # the properties below are optional base=123, weight=123 )] )
Create a new
AWS::ECS::ClusterCapacityProviderAssociations
.- Parameters:
scope (
Construct
) –scope in which this resource is defined.
id (
str
) –scoped id of the resource.
capacity_providers (
Sequence
[str
]) – The capacity providers to associate with the cluster.cluster (
str
) – The cluster the capacity provider association is the target of.default_capacity_provider_strategy (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CapacityProviderStrategyProperty
,Dict
[str
,Any
]]]]) – The default capacity provider strategy to associate with the cluster.
Methods
- add_deletion_override(path)
Syntactic sugar for
addOverride(path, undefined)
.- Parameters:
path (
str
) – The path of the value to delete.- Return type:
None
- add_depends_on(target)
Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- add_metadata(key, value)
Add a value to the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –value (
Any
) –
- See:
- Return type:
None
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- add_override(path, value)
Adds an override to the synthesized CloudFormation resource.
To add a property override, either use
addPropertyOverride
or prefixpath
with “Properties.” (i.e.Properties.TopicName
).If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.
To include a literal
.
in the property name, prefix with a\
. In most programming languages you will need to write this as"\\."
because the\
itself will need to be escaped.For example:
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"]) cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")
would add the overrides Example:
"Properties": { "GlobalSecondaryIndexes": [ { "Projection": { "NonKeyAttributes": [ "myattribute" ] ... } ... }, { "ProjectionType": "INCLUDE" ... }, ] ... }
The
value
argument toaddOverride
will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.- Parameters:
path (
str
) –The path of the property, you can use dot notation to override values in complex types. Any intermdediate keys will be created as needed.
value (
Any
) –The value. Could be primitive or complex.
- Return type:
None
- add_property_deletion_override(property_path)
Adds an override that deletes the value of a property from the resource definition.
- Parameters:
property_path (
str
) – The path to the property.- Return type:
None
- add_property_override(property_path, value)
Adds an override to a resource property.
Syntactic sugar for
addOverride("Properties.<...>", value)
.- Parameters:
property_path (
str
) – The path of the property.value (
Any
) – The value.
- Return type:
None
- apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)
Sets the deletion policy of the resource based on the removal policy specified.
The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.
The resource can be deleted (
RemovalPolicy.DESTROY
), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN
).- Parameters:
policy (
Optional
[RemovalPolicy
]) –apply_to_update_replace_policy (
Optional
[bool
]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: truedefault (
Optional
[RemovalPolicy
]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resoure, please consult that specific resource’s documentation.
- Return type:
None
- get_att(attribute_name)
Returns a token for an runtime attribute of this resource.
Ideally, use generated attribute accessors (e.g.
resource.arn
), but this can be used for future compatibility in case there is no generated attribute.- Parameters:
attribute_name (
str
) – The name of the attribute.- Return type:
- get_metadata(key)
Retrieve a value value from the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –- See:
- Return type:
Any
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- inspect(inspector)
Examines the CloudFormation resource and discloses attributes.
- Parameters:
inspector (
TreeInspector
) –tree inspector to collect and process attributes.
- Return type:
None
- override_logical_id(new_logical_id)
Overrides the auto-generated logical ID with a specific ID.
- Parameters:
new_logical_id (
str
) – The new logical ID to use for this stack element.- Return type:
None
- to_string()
Returns a string representation of this construct.
- Return type:
str
- Returns:
a string representation of this resource
Attributes
- CFN_RESOURCE_TYPE_NAME = 'AWS::ECS::ClusterCapacityProviderAssociations'
- capacity_providers
The capacity providers to associate with the cluster.
- cfn_options
Options for this resource, such as condition, update policy etc.
- cfn_resource_type
AWS resource type.
- cluster
The cluster the capacity provider association is the target of.
- creation_stack
return:
the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.
- default_capacity_provider_strategy
The default capacity provider strategy to associate with the cluster.
- logical_id
The logical ID for this CloudFormation stack element.
The logical ID of the element is calculated from the path of the resource node in the construct tree.
To override this value, use
overrideLogicalId(newLogicalId)
.- Returns:
the logical ID as a stringified token. This value will only get resolved during synthesis.
- node
The construct tree node associated with this construct.
- ref
Return a string that will be resolved to a CloudFormation
{ Ref }
for this element.If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through
Lazy.any({ produce: resource.ref })
.
- stack
The stack in which this element is defined.
CfnElements must be defined within a stack scope (directly or indirectly).
Static Methods
- classmethod is_cfn_element(x)
Returns
true
if a construct is a stack element (i.e. part of the synthesized cloudformation template).Uses duck-typing instead of
instanceof
to allow stack elements from different versions of this library to be included in the same stack.- Parameters:
x (
Any
) –- Return type:
bool
- Returns:
The construct as a stack element or undefined if it is not a stack element.
- classmethod is_cfn_resource(construct)
Check whether the given construct is a CfnResource.
- Parameters:
construct (
IConstruct
) –- Return type:
bool
- classmethod is_construct(x)
Return whether the given object is a Construct.
- Parameters:
x (
Any
) –- Return type:
bool
CapacityProviderStrategyProperty
- class CfnClusterCapacityProviderAssociations.CapacityProviderStrategyProperty(*, capacity_provider, base=None, weight=None)
Bases:
object
The
CapacityProviderStrategy
property specifies the details of the default capacity provider strategy for the cluster.When services or tasks are run in the cluster with no launch type or capacity provider strategy specified, the default capacity provider strategy is used.
- Parameters:
capacity_provider (
str
) – The short name of the capacity provider.base (
Union
[int
,float
,None
]) – The base value designates how many tasks, at a minimum, to run on the specified capacity provider. Only one capacity provider in a capacity provider strategy can have a base defined. If no value is specified, the default value of0
is used.weight (
Union
[int
,float
,None
]) – The weight value designates the relative percentage of the total number of tasks launched that should use the specified capacity provider. Theweight
value is taken into consideration after thebase
value, if defined, is satisfied. If noweight
value is specified, the default value of0
is used. When multiple capacity providers are specified within a capacity provider strategy, at least one of the capacity providers must have a weight value greater than zero and any capacity providers with a weight of0
will not be used to place tasks. If you specify multiple capacity providers in a strategy that all have a weight of0
, anyRunTask
orCreateService
actions using the capacity provider strategy will fail. An example scenario for using weights is defining a strategy that contains two capacity providers and both have a weight of1
, then when thebase
is satisfied, the tasks will be split evenly across the two capacity providers. Using that same logic, if you specify a weight of1
for capacityProviderA and a weight of4
for capacityProviderB , then for every one task that is run using capacityProviderA , four tasks would use capacityProviderB .
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_ecs as ecs capacity_provider_strategy_property = ecs.CfnClusterCapacityProviderAssociations.CapacityProviderStrategyProperty( capacity_provider="capacityProvider", # the properties below are optional base=123, weight=123 )
Attributes
- base
The base value designates how many tasks, at a minimum, to run on the specified capacity provider.
Only one capacity provider in a capacity provider strategy can have a base defined. If no value is specified, the default value of
0
is used.
- capacity_provider
The short name of the capacity provider.
- weight
The weight value designates the relative percentage of the total number of tasks launched that should use the specified capacity provider.
The
weight
value is taken into consideration after thebase
value, if defined, is satisfied.If no
weight
value is specified, the default value of0
is used. When multiple capacity providers are specified within a capacity provider strategy, at least one of the capacity providers must have a weight value greater than zero and any capacity providers with a weight of0
will not be used to place tasks. If you specify multiple capacity providers in a strategy that all have a weight of0
, anyRunTask
orCreateService
actions using the capacity provider strategy will fail.An example scenario for using weights is defining a strategy that contains two capacity providers and both have a weight of
1
, then when thebase
is satisfied, the tasks will be split evenly across the two capacity providers. Using that same logic, if you specify a weight of1
for capacityProviderA and a weight of4
for capacityProviderB , then for every one task that is run using capacityProviderA , four tasks would use capacityProviderB .