CfnSolution
- class aws_cdk.aws_personalize.CfnSolution(scope, id, *, dataset_group_arn, name, event_type=None, perform_auto_ml=None, perform_hpo=None, recipe_arn=None, solution_config=None)
Bases:
CfnResource
A CloudFormation
AWS::Personalize::Solution
.An object that provides information about a solution. A solution is a trained model that can be deployed as a campaign.
- CloudformationResource:
AWS::Personalize::Solution
- Link:
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-personalize-solution.html
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize # auto_ml_config: Any # hpo_config: Any cfn_solution = personalize.CfnSolution(self, "MyCfnSolution", dataset_group_arn="datasetGroupArn", name="name", # the properties below are optional event_type="eventType", perform_auto_ml=False, perform_hpo=False, recipe_arn="recipeArn", solution_config=personalize.CfnSolution.SolutionConfigProperty( algorithm_hyper_parameters={ "algorithm_hyper_parameters_key": "algorithmHyperParameters" }, auto_ml_config=auto_ml_config, event_value_threshold="eventValueThreshold", feature_transformation_parameters={ "feature_transformation_parameters_key": "featureTransformationParameters" }, hpo_config=hpo_config ) )
Create a new
AWS::Personalize::Solution
.- Parameters:
scope (
Construct
) –scope in which this resource is defined.
id (
str
) –scoped id of the resource.
dataset_group_arn (
str
) – The Amazon Resource Name (ARN) of the dataset group that provides the training data.name (
str
) – The name of the solution.event_type (
Optional
[str
]) – The event type (for example, ‘click’ or ‘like’) that is used for training the model. If noeventType
is provided, Amazon Personalize uses all interactions for training with equal weight regardless of type.perform_auto_ml (
Union
[bool
,IResolvable
,None
]) –We don’t recommend enabling automated machine learning. Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case. When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (
recipeArn
must not be specified). When false (the default), Amazon Personalize usesrecipeArn
for training.perform_hpo (
Union
[bool
,IResolvable
,None
]) – Whether to perform hyperparameter optimization (HPO) on the chosen recipe. The default isfalse
.recipe_arn (
Optional
[str
]) – The ARN of the recipe used to create the solution.solution_config (
Union
[IResolvable
,SolutionConfigProperty
,Dict
[str
,Any
],None
]) – Describes the configuration properties for the solution.
Methods
- add_deletion_override(path)
Syntactic sugar for
addOverride(path, undefined)
.- Parameters:
path (
str
) – The path of the value to delete.- Return type:
None
- add_depends_on(target)
Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- add_metadata(key, value)
Add a value to the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –value (
Any
) –
- See:
- Return type:
None
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- add_override(path, value)
Adds an override to the synthesized CloudFormation resource.
To add a property override, either use
addPropertyOverride
or prefixpath
with “Properties.” (i.e.Properties.TopicName
).If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.
To include a literal
.
in the property name, prefix with a\
. In most programming languages you will need to write this as"\\."
because the\
itself will need to be escaped.For example:
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"]) cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")
would add the overrides Example:
"Properties": { "GlobalSecondaryIndexes": [ { "Projection": { "NonKeyAttributes": [ "myattribute" ] ... } ... }, { "ProjectionType": "INCLUDE" ... }, ] ... }
The
value
argument toaddOverride
will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.- Parameters:
path (
str
) –The path of the property, you can use dot notation to override values in complex types. Any intermdediate keys will be created as needed.
value (
Any
) –The value. Could be primitive or complex.
- Return type:
None
- add_property_deletion_override(property_path)
Adds an override that deletes the value of a property from the resource definition.
- Parameters:
property_path (
str
) – The path to the property.- Return type:
None
- add_property_override(property_path, value)
Adds an override to a resource property.
Syntactic sugar for
addOverride("Properties.<...>", value)
.- Parameters:
property_path (
str
) – The path of the property.value (
Any
) – The value.
- Return type:
None
- apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)
Sets the deletion policy of the resource based on the removal policy specified.
The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.
The resource can be deleted (
RemovalPolicy.DESTROY
), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN
).- Parameters:
policy (
Optional
[RemovalPolicy
]) –apply_to_update_replace_policy (
Optional
[bool
]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: truedefault (
Optional
[RemovalPolicy
]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resoure, please consult that specific resource’s documentation.
- Return type:
None
- get_att(attribute_name)
Returns a token for an runtime attribute of this resource.
Ideally, use generated attribute accessors (e.g.
resource.arn
), but this can be used for future compatibility in case there is no generated attribute.- Parameters:
attribute_name (
str
) – The name of the attribute.- Return type:
- get_metadata(key)
Retrieve a value value from the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –- See:
- Return type:
Any
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- inspect(inspector)
Examines the CloudFormation resource and discloses attributes.
- Parameters:
inspector (
TreeInspector
) –tree inspector to collect and process attributes.
- Return type:
None
- override_logical_id(new_logical_id)
Overrides the auto-generated logical ID with a specific ID.
- Parameters:
new_logical_id (
str
) – The new logical ID to use for this stack element.- Return type:
None
- to_string()
Returns a string representation of this construct.
- Return type:
str
- Returns:
a string representation of this resource
Attributes
- CFN_RESOURCE_TYPE_NAME = 'AWS::Personalize::Solution'
- attr_solution_arn
The Amazon Resource Name (ARN) of the solution.
- CloudformationAttribute:
SolutionArn
- cfn_options
Options for this resource, such as condition, update policy etc.
- cfn_resource_type
AWS resource type.
- creation_stack
return:
the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.
- dataset_group_arn
The Amazon Resource Name (ARN) of the dataset group that provides the training data.
- event_type
The event type (for example, ‘click’ or ‘like’) that is used for training the model.
If no
eventType
is provided, Amazon Personalize uses all interactions for training with equal weight regardless of type.
- logical_id
The logical ID for this CloudFormation stack element.
The logical ID of the element is calculated from the path of the resource node in the construct tree.
To override this value, use
overrideLogicalId(newLogicalId)
.- Returns:
the logical ID as a stringified token. This value will only get resolved during synthesis.
- name
The name of the solution.
- node
The construct tree node associated with this construct.
- perform_auto_ml
We don’t recommend enabling automated machine learning.
Instead, match your use case to the available Amazon Personalize recipes. For more information, see Determining your use case.
When true, Amazon Personalize performs a search for the best USER_PERSONALIZATION recipe from the list specified in the solution configuration (
recipeArn
must not be specified). When false (the default), Amazon Personalize usesrecipeArn
for training.
- perform_hpo
Whether to perform hyperparameter optimization (HPO) on the chosen recipe.
The default is
false
.
- recipe_arn
The ARN of the recipe used to create the solution.
- ref
Return a string that will be resolved to a CloudFormation
{ Ref }
for this element.If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through
Lazy.any({ produce: resource.ref })
.
- solution_config
Describes the configuration properties for the solution.
- stack
The stack in which this element is defined.
CfnElements must be defined within a stack scope (directly or indirectly).
Static Methods
- classmethod is_cfn_element(x)
Returns
true
if a construct is a stack element (i.e. part of the synthesized cloudformation template).Uses duck-typing instead of
instanceof
to allow stack elements from different versions of this library to be included in the same stack.- Parameters:
x (
Any
) –- Return type:
bool
- Returns:
The construct as a stack element or undefined if it is not a stack element.
- classmethod is_cfn_resource(construct)
Check whether the given construct is a CfnResource.
- Parameters:
construct (
IConstruct
) –- Return type:
bool
- classmethod is_construct(x)
Return whether the given object is a Construct.
- Parameters:
x (
Any
) –- Return type:
bool
AlgorithmHyperParameterRangesProperty
- class CfnSolution.AlgorithmHyperParameterRangesProperty(*, categorical_hyper_parameter_ranges=None, continuous_hyper_parameter_ranges=None, integer_hyper_parameter_ranges=None)
Bases:
object
- Parameters:
categorical_hyper_parameter_ranges (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CategoricalHyperParameterRangeProperty
,Dict
[str
,Any
]]],None
]) –CfnSolution.AlgorithmHyperParameterRangesProperty.CategoricalHyperParameterRanges
.continuous_hyper_parameter_ranges (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,ContinuousHyperParameterRangeProperty
,Dict
[str
,Any
]]],None
]) –CfnSolution.AlgorithmHyperParameterRangesProperty.ContinuousHyperParameterRanges
.integer_hyper_parameter_ranges (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,IntegerHyperParameterRangeProperty
,Dict
[str
,Any
]]],None
]) –CfnSolution.AlgorithmHyperParameterRangesProperty.IntegerHyperParameterRanges
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize algorithm_hyper_parameter_ranges_property = personalize.CfnSolution.AlgorithmHyperParameterRangesProperty( categorical_hyper_parameter_ranges=[personalize.CfnSolution.CategoricalHyperParameterRangeProperty( name="name", values=["values"] )], continuous_hyper_parameter_ranges=[personalize.CfnSolution.ContinuousHyperParameterRangeProperty( max_value=123, min_value=123, name="name" )], integer_hyper_parameter_ranges=[personalize.CfnSolution.IntegerHyperParameterRangeProperty( max_value=123, min_value=123, name="name" )] )
Attributes
- categorical_hyper_parameter_ranges
CfnSolution.AlgorithmHyperParameterRangesProperty.CategoricalHyperParameterRanges
.
- continuous_hyper_parameter_ranges
CfnSolution.AlgorithmHyperParameterRangesProperty.ContinuousHyperParameterRanges
.
- integer_hyper_parameter_ranges
CfnSolution.AlgorithmHyperParameterRangesProperty.IntegerHyperParameterRanges
.
AutoMLConfigProperty
- class CfnSolution.AutoMLConfigProperty(*, metric_name=None, recipe_list=None)
Bases:
object
- Parameters:
metric_name (
Optional
[str
]) –CfnSolution.AutoMLConfigProperty.MetricName
.recipe_list (
Optional
[Sequence
[str
]]) –CfnSolution.AutoMLConfigProperty.RecipeList
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize auto_mLConfig_property = personalize.CfnSolution.AutoMLConfigProperty( metric_name="metricName", recipe_list=["recipeList"] )
Attributes
- metric_name
CfnSolution.AutoMLConfigProperty.MetricName
.
- recipe_list
CfnSolution.AutoMLConfigProperty.RecipeList
.
CategoricalHyperParameterRangeProperty
- class CfnSolution.CategoricalHyperParameterRangeProperty(*, name=None, values=None)
Bases:
object
- Parameters:
name (
Optional
[str
]) –CfnSolution.CategoricalHyperParameterRangeProperty.Name
.values (
Optional
[Sequence
[str
]]) –CfnSolution.CategoricalHyperParameterRangeProperty.Values
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize categorical_hyper_parameter_range_property = personalize.CfnSolution.CategoricalHyperParameterRangeProperty( name="name", values=["values"] )
Attributes
- name
CfnSolution.CategoricalHyperParameterRangeProperty.Name
.
- values
CfnSolution.CategoricalHyperParameterRangeProperty.Values
.
ContinuousHyperParameterRangeProperty
- class CfnSolution.ContinuousHyperParameterRangeProperty(*, max_value=None, min_value=None, name=None)
Bases:
object
- Parameters:
max_value (
Union
[int
,float
,None
]) –CfnSolution.ContinuousHyperParameterRangeProperty.MaxValue
.min_value (
Union
[int
,float
,None
]) –CfnSolution.ContinuousHyperParameterRangeProperty.MinValue
.name (
Optional
[str
]) –CfnSolution.ContinuousHyperParameterRangeProperty.Name
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize continuous_hyper_parameter_range_property = personalize.CfnSolution.ContinuousHyperParameterRangeProperty( max_value=123, min_value=123, name="name" )
Attributes
- max_value
CfnSolution.ContinuousHyperParameterRangeProperty.MaxValue
.
- min_value
CfnSolution.ContinuousHyperParameterRangeProperty.MinValue
.
- name
CfnSolution.ContinuousHyperParameterRangeProperty.Name
.
HpoConfigProperty
- class CfnSolution.HpoConfigProperty(*, algorithm_hyper_parameter_ranges=None, hpo_objective=None, hpo_resource_config=None)
Bases:
object
- Parameters:
algorithm_hyper_parameter_ranges (
Union
[IResolvable
,AlgorithmHyperParameterRangesProperty
,Dict
[str
,Any
],None
]) –CfnSolution.HpoConfigProperty.AlgorithmHyperParameterRanges
.hpo_objective (
Union
[IResolvable
,HpoObjectiveProperty
,Dict
[str
,Any
],None
]) –CfnSolution.HpoConfigProperty.HpoObjective
.hpo_resource_config (
Union
[IResolvable
,HpoResourceConfigProperty
,Dict
[str
,Any
],None
]) –CfnSolution.HpoConfigProperty.HpoResourceConfig
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize hpo_config_property = personalize.CfnSolution.HpoConfigProperty( algorithm_hyper_parameter_ranges=personalize.CfnSolution.AlgorithmHyperParameterRangesProperty( categorical_hyper_parameter_ranges=[personalize.CfnSolution.CategoricalHyperParameterRangeProperty( name="name", values=["values"] )], continuous_hyper_parameter_ranges=[personalize.CfnSolution.ContinuousHyperParameterRangeProperty( max_value=123, min_value=123, name="name" )], integer_hyper_parameter_ranges=[personalize.CfnSolution.IntegerHyperParameterRangeProperty( max_value=123, min_value=123, name="name" )] ), hpo_objective=personalize.CfnSolution.HpoObjectiveProperty( metric_name="metricName", metric_regex="metricRegex", type="type" ), hpo_resource_config=personalize.CfnSolution.HpoResourceConfigProperty( max_number_of_training_jobs="maxNumberOfTrainingJobs", max_parallel_training_jobs="maxParallelTrainingJobs" ) )
Attributes
- algorithm_hyper_parameter_ranges
CfnSolution.HpoConfigProperty.AlgorithmHyperParameterRanges
.
- hpo_objective
CfnSolution.HpoConfigProperty.HpoObjective
.
- hpo_resource_config
CfnSolution.HpoConfigProperty.HpoResourceConfig
.
HpoObjectiveProperty
- class CfnSolution.HpoObjectiveProperty(*, metric_name=None, metric_regex=None, type=None)
Bases:
object
- Parameters:
metric_name (
Optional
[str
]) –CfnSolution.HpoObjectiveProperty.MetricName
.metric_regex (
Optional
[str
]) –CfnSolution.HpoObjectiveProperty.MetricRegex
.type (
Optional
[str
]) –CfnSolution.HpoObjectiveProperty.Type
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize hpo_objective_property = personalize.CfnSolution.HpoObjectiveProperty( metric_name="metricName", metric_regex="metricRegex", type="type" )
Attributes
- metric_name
CfnSolution.HpoObjectiveProperty.MetricName
.
- metric_regex
CfnSolution.HpoObjectiveProperty.MetricRegex
.
- type
CfnSolution.HpoObjectiveProperty.Type
.
HpoResourceConfigProperty
- class CfnSolution.HpoResourceConfigProperty(*, max_number_of_training_jobs=None, max_parallel_training_jobs=None)
Bases:
object
- Parameters:
max_number_of_training_jobs (
Optional
[str
]) –CfnSolution.HpoResourceConfigProperty.MaxNumberOfTrainingJobs
.max_parallel_training_jobs (
Optional
[str
]) –CfnSolution.HpoResourceConfigProperty.MaxParallelTrainingJobs
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize hpo_resource_config_property = personalize.CfnSolution.HpoResourceConfigProperty( max_number_of_training_jobs="maxNumberOfTrainingJobs", max_parallel_training_jobs="maxParallelTrainingJobs" )
Attributes
- max_number_of_training_jobs
CfnSolution.HpoResourceConfigProperty.MaxNumberOfTrainingJobs
.
- max_parallel_training_jobs
CfnSolution.HpoResourceConfigProperty.MaxParallelTrainingJobs
.
IntegerHyperParameterRangeProperty
- class CfnSolution.IntegerHyperParameterRangeProperty(*, max_value=None, min_value=None, name=None)
Bases:
object
- Parameters:
max_value (
Union
[int
,float
,None
]) –CfnSolution.IntegerHyperParameterRangeProperty.MaxValue
.min_value (
Union
[int
,float
,None
]) –CfnSolution.IntegerHyperParameterRangeProperty.MinValue
.name (
Optional
[str
]) –CfnSolution.IntegerHyperParameterRangeProperty.Name
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize integer_hyper_parameter_range_property = personalize.CfnSolution.IntegerHyperParameterRangeProperty( max_value=123, min_value=123, name="name" )
Attributes
- max_value
CfnSolution.IntegerHyperParameterRangeProperty.MaxValue
.
- min_value
CfnSolution.IntegerHyperParameterRangeProperty.MinValue
.
- name
CfnSolution.IntegerHyperParameterRangeProperty.Name
.
SolutionConfigProperty
- class CfnSolution.SolutionConfigProperty(*, algorithm_hyper_parameters=None, auto_ml_config=None, event_value_threshold=None, feature_transformation_parameters=None, hpo_config=None)
Bases:
object
Describes the configuration properties for the solution.
- Parameters:
algorithm_hyper_parameters (
Union
[IResolvable
,Mapping
[str
,str
],None
]) – Lists the hyperparameter names and ranges.auto_ml_config (
Optional
[Any
]) – The AutoMLConfig object containing a list of recipes to search when AutoML is performed.event_value_threshold (
Optional
[str
]) – Only events with a value greater than or equal to this threshold are used for training a model.feature_transformation_parameters (
Union
[IResolvable
,Mapping
[str
,str
],None
]) – Lists the feature transformation parameters.hpo_config (
Optional
[Any
]) – Describes the properties for hyperparameter optimization (HPO).
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_personalize as personalize # auto_ml_config: Any # hpo_config: Any solution_config_property = personalize.CfnSolution.SolutionConfigProperty( algorithm_hyper_parameters={ "algorithm_hyper_parameters_key": "algorithmHyperParameters" }, auto_ml_config=auto_ml_config, event_value_threshold="eventValueThreshold", feature_transformation_parameters={ "feature_transformation_parameters_key": "featureTransformationParameters" }, hpo_config=hpo_config )
Attributes
- algorithm_hyper_parameters
Lists the hyperparameter names and ranges.
- auto_ml_config
//docs.aws.amazon.com/personalize/latest/dg/API_AutoMLConfig.html>`_ object containing a list of recipes to search when AutoML is performed.
- event_value_threshold
Only events with a value greater than or equal to this threshold are used for training a model.
- feature_transformation_parameters
Lists the feature transformation parameters.
- hpo_config
Describes the properties for hyperparameter optimization (HPO).