CfnEndpointConfig
- class aws_cdk.aws_sagemaker.CfnEndpointConfig(scope, id, *, production_variants, async_inference_config=None, data_capture_config=None, endpoint_config_name=None, explainer_config=None, kms_key_id=None, shadow_production_variants=None, tags=None)
Bases:
CfnResource
A CloudFormation
AWS::SageMaker::EndpointConfig
.The
AWS::SageMaker::EndpointConfig
resource creates a configuration for an Amazon SageMaker endpoint. For more information, see CreateEndpointConfig in the SageMaker Developer Guide .- CloudformationResource:
AWS::SageMaker::EndpointConfig
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker cfn_endpoint_config = sagemaker.CfnEndpointConfig(self, "MyCfnEndpointConfig", production_variants=[sagemaker.CfnEndpointConfig.ProductionVariantProperty( initial_variant_weight=123, model_name="modelName", variant_name="variantName", # the properties below are optional accelerator_type="acceleratorType", container_startup_health_check_timeout_in_seconds=123, enable_ssm_access=False, initial_instance_count=123, instance_type="instanceType", model_data_download_timeout_in_seconds=123, serverless_config=sagemaker.CfnEndpointConfig.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, # the properties below are optional provisioned_concurrency=123 ), volume_size_in_gb=123 )], # the properties below are optional async_inference_config=sagemaker.CfnEndpointConfig.AsyncInferenceConfigProperty( output_config=sagemaker.CfnEndpointConfig.AsyncInferenceOutputConfigProperty( kms_key_id="kmsKeyId", notification_config=sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" ), s3_failure_path="s3FailurePath", s3_output_path="s3OutputPath" ), # the properties below are optional client_config=sagemaker.CfnEndpointConfig.AsyncInferenceClientConfigProperty( max_concurrent_invocations_per_instance=123 ) ), data_capture_config=sagemaker.CfnEndpointConfig.DataCaptureConfigProperty( capture_options=[sagemaker.CfnEndpointConfig.CaptureOptionProperty( capture_mode="captureMode" )], destination_s3_uri="destinationS3Uri", initial_sampling_percentage=123, # the properties below are optional capture_content_type_header=sagemaker.CfnEndpointConfig.CaptureContentTypeHeaderProperty( csv_content_types=["csvContentTypes"], json_content_types=["jsonContentTypes"] ), enable_capture=False, kms_key_id="kmsKeyId" ), endpoint_config_name="endpointConfigName", explainer_config=sagemaker.CfnEndpointConfig.ExplainerConfigProperty( clarify_explainer_config=sagemaker.CfnEndpointConfig.ClarifyExplainerConfigProperty( shap_config=sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty( shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), # the properties below are optional number_of_samples=123, seed=123, text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False ), # the properties below are optional enable_explanations="enableExplanations", inference_config=sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 ) ) ), kms_key_id="kmsKeyId", shadow_production_variants=[sagemaker.CfnEndpointConfig.ProductionVariantProperty( initial_variant_weight=123, model_name="modelName", variant_name="variantName", # the properties below are optional accelerator_type="acceleratorType", container_startup_health_check_timeout_in_seconds=123, enable_ssm_access=False, initial_instance_count=123, instance_type="instanceType", model_data_download_timeout_in_seconds=123, serverless_config=sagemaker.CfnEndpointConfig.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, # the properties below are optional provisioned_concurrency=123 ), volume_size_in_gb=123 )], tags=[CfnTag( key="key", value="value" )] )
Create a new
AWS::SageMaker::EndpointConfig
.- Parameters:
scope (
Construct
) –scope in which this resource is defined.
id (
str
) –scoped id of the resource.
production_variants (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,ProductionVariantProperty
,Dict
[str
,Any
]]]]) – A list ofProductionVariant
objects, one for each model that you want to host at this endpoint.async_inference_config (
Union
[IResolvable
,AsyncInferenceConfigProperty
,Dict
[str
,Any
],None
]) – Specifies configuration for how an endpoint performs asynchronous inference.data_capture_config (
Union
[IResolvable
,DataCaptureConfigProperty
,Dict
[str
,Any
],None
]) – Specifies how to capture endpoint data for model monitor. The data capture configuration applies to all production variants hosted at the endpoint.endpoint_config_name (
Optional
[str
]) – The name of the endpoint configuration.explainer_config (
Union
[IResolvable
,ExplainerConfigProperty
,Dict
[str
,Any
],None
]) –AWS::SageMaker::EndpointConfig.ExplainerConfig
.kms_key_id (
Optional
[str
]) – The Amazon Resource Name (ARN) of an AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. - Key ID:1234abcd-12ab-34cd-56ef-1234567890ab
- Key ARN:arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
- Alias name:alias/ExampleAlias
- Alias name ARN:arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
The KMS key policy must grant permission to the IAM role that you specify in yourCreateEndpoint
,UpdateEndpoint
requests. For more information, refer to the AWS Key Management Service section Using Key Policies in AWS KMS .. epigraph:: Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can’t request aKmsKeyId
when using an instance type with local storage. If any of the models that you specify in theProductionVariants
parameter use nitro-based instances with local storage, do not specify a value for theKmsKeyId
parameter. If you specify a value forKmsKeyId
when using any nitro-based instances with local storage, the call toCreateEndpointConfig
fails. For a list of instance types that support local instance storage, see Instance Store Volumes . For more information about local instance storage encryption, see SSD Instance Store Volumes .shadow_production_variants (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,ProductionVariantProperty
,Dict
[str
,Any
]]],None
]) – Array ofProductionVariant
objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified onProductionVariants
. If you use this field, you can only specify one variant forProductionVariants
and one variant forShadowProductionVariants
.tags (
Optional
[Sequence
[Union
[CfnTag
,Dict
[str
,Any
]]]]) – A list of key-value pairs to apply to this resource. For more information, see Resource Tag and Using Cost Allocation Tags .
Methods
- add_deletion_override(path)
Syntactic sugar for
addOverride(path, undefined)
.- Parameters:
path (
str
) – The path of the value to delete.- Return type:
None
- add_depends_on(target)
Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.
- Parameters:
target (
CfnResource
)- Return type:
None
- add_metadata(key, value)
Add a value to the CloudFormation Resource Metadata.
- Parameters:
key (
str
)value (
Any
)
- See:
- Return type:
None
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- add_override(path, value)
Adds an override to the synthesized CloudFormation resource.
To add a property override, either use
addPropertyOverride
or prefixpath
with “Properties.” (i.e.Properties.TopicName
).If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.
To include a literal
.
in the property name, prefix with a\
. In most programming languages you will need to write this as"\\."
because the\
itself will need to be escaped.For example:
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"]) cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")
would add the overrides Example:
"Properties": { "GlobalSecondaryIndexes": [ { "Projection": { "NonKeyAttributes": [ "myattribute" ] ... } ... }, { "ProjectionType": "INCLUDE" ... }, ] ... }
The
value
argument toaddOverride
will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.- Parameters:
path (
str
) –The path of the property, you can use dot notation to override values in complex types. Any intermdediate keys will be created as needed.
value (
Any
) –The value. Could be primitive or complex.
- Return type:
None
- add_property_deletion_override(property_path)
Adds an override that deletes the value of a property from the resource definition.
- Parameters:
property_path (
str
) – The path to the property.- Return type:
None
- add_property_override(property_path, value)
Adds an override to a resource property.
Syntactic sugar for
addOverride("Properties.<...>", value)
.- Parameters:
property_path (
str
) – The path of the property.value (
Any
) – The value.
- Return type:
None
- apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)
Sets the deletion policy of the resource based on the removal policy specified.
The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.
The resource can be deleted (
RemovalPolicy.DESTROY
), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN
).- Parameters:
policy (
Optional
[RemovalPolicy
])apply_to_update_replace_policy (
Optional
[bool
]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: truedefault (
Optional
[RemovalPolicy
]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resoure, please consult that specific resource’s documentation.
- Return type:
None
- get_att(attribute_name)
Returns a token for an runtime attribute of this resource.
Ideally, use generated attribute accessors (e.g.
resource.arn
), but this can be used for future compatibility in case there is no generated attribute.- Parameters:
attribute_name (
str
) – The name of the attribute.- Return type:
- get_metadata(key)
Retrieve a value value from the CloudFormation Resource Metadata.
- Parameters:
key (
str
)- See:
- Return type:
Any
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- inspect(inspector)
Examines the CloudFormation resource and discloses attributes.
- Parameters:
inspector (
TreeInspector
) –tree inspector to collect and process attributes.
- Return type:
None
- override_logical_id(new_logical_id)
Overrides the auto-generated logical ID with a specific ID.
- Parameters:
new_logical_id (
str
) – The new logical ID to use for this stack element.- Return type:
None
- to_string()
Returns a string representation of this construct.
- Return type:
str
- Returns:
a string representation of this resource
Attributes
- CFN_RESOURCE_TYPE_NAME = 'AWS::SageMaker::EndpointConfig'
- async_inference_config
Specifies configuration for how an endpoint performs asynchronous inference.
- attr_endpoint_config_name
The name of the endpoint configuration, such as
MyEndpointConfiguration
.- CloudformationAttribute:
EndpointConfigName
- cfn_options
Options for this resource, such as condition, update policy etc.
- cfn_resource_type
AWS resource type.
- creation_stack
return:
the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.
- data_capture_config
Specifies how to capture endpoint data for model monitor.
The data capture configuration applies to all production variants hosted at the endpoint.
- endpoint_config_name
The name of the endpoint configuration.
- explainer_config
AWS::SageMaker::EndpointConfig.ExplainerConfig
.
- kms_key_id
The Amazon Resource Name (ARN) of an AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.
Key ID:
1234abcd-12ab-34cd-56ef-1234567890ab
Key ARN:
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias name:
alias/ExampleAlias
Alias name ARN:
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
The KMS key policy must grant permission to the IAM role that you specify in your
CreateEndpoint
,UpdateEndpoint
requests. For more information, refer to the AWS Key Management Service section Using Key Policies in AWS KMS .. epigraph:Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a ``KmsKeyId`` when using an instance type with local storage. If any of the models that you specify in the ``ProductionVariants`` parameter use nitro-based instances with local storage, do not specify a value for the ``KmsKeyId`` parameter. If you specify a value for ``KmsKeyId`` when using any nitro-based instances with local storage, the call to ``CreateEndpointConfig`` fails. For a list of instance types that support local instance storage, see `Instance Store Volumes <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-volumes>`_ . For more information about local instance storage encryption, see `SSD Instance Store Volumes <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html>`_ .
- logical_id
The logical ID for this CloudFormation stack element.
The logical ID of the element is calculated from the path of the resource node in the construct tree.
To override this value, use
overrideLogicalId(newLogicalId)
.- Returns:
the logical ID as a stringified token. This value will only get resolved during synthesis.
- node
The construct tree node associated with this construct.
- production_variants
A list of
ProductionVariant
objects, one for each model that you want to host at this endpoint.
- ref
Return a string that will be resolved to a CloudFormation
{ Ref }
for this element.If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through
Lazy.any({ produce: resource.ref })
.
- shadow_production_variants
Array of
ProductionVariant
objects.There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on
ProductionVariants
. If you use this field, you can only specify one variant forProductionVariants
and one variant forShadowProductionVariants
.
- stack
The stack in which this element is defined.
CfnElements must be defined within a stack scope (directly or indirectly).
- tags
A list of key-value pairs to apply to this resource.
For more information, see Resource Tag and Using Cost Allocation Tags .
Static Methods
- classmethod is_cfn_element(x)
Returns
true
if a construct is a stack element (i.e. part of the synthesized cloudformation template).Uses duck-typing instead of
instanceof
to allow stack elements from different versions of this library to be included in the same stack.- Parameters:
x (
Any
)- Return type:
bool
- Returns:
The construct as a stack element or undefined if it is not a stack element.
- classmethod is_cfn_resource(construct)
Check whether the given construct is a CfnResource.
- Parameters:
construct (
IConstruct
)- Return type:
bool
- classmethod is_construct(x)
Return whether the given object is a Construct.
- Parameters:
x (
Any
)- Return type:
bool
AsyncInferenceClientConfigProperty
- class CfnEndpointConfig.AsyncInferenceClientConfigProperty(*, max_concurrent_invocations_per_instance=None)
Bases:
object
Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
- Parameters:
max_concurrent_invocations_per_instance (
Union
[int
,float
,None
]) – The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker will choose an optimal value for you.- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker async_inference_client_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceClientConfigProperty( max_concurrent_invocations_per_instance=123 )
Attributes
- max_concurrent_invocations_per_instance
The maximum number of concurrent requests sent by the SageMaker client to the model container.
If no value is provided, SageMaker will choose an optimal value for you.
AsyncInferenceConfigProperty
- class CfnEndpointConfig.AsyncInferenceConfigProperty(*, output_config, client_config=None)
Bases:
object
Specifies configuration for how an endpoint performs asynchronous inference.
- Parameters:
output_config (
Union
[IResolvable
,AsyncInferenceOutputConfigProperty
,Dict
[str
,Any
]]) – Specifies the configuration for asynchronous inference invocation outputs.client_config (
Union
[IResolvable
,AsyncInferenceClientConfigProperty
,Dict
[str
,Any
],None
]) – Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker async_inference_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceConfigProperty( output_config=sagemaker.CfnEndpointConfig.AsyncInferenceOutputConfigProperty( kms_key_id="kmsKeyId", notification_config=sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" ), s3_failure_path="s3FailurePath", s3_output_path="s3OutputPath" ), # the properties below are optional client_config=sagemaker.CfnEndpointConfig.AsyncInferenceClientConfigProperty( max_concurrent_invocations_per_instance=123 ) )
Attributes
- client_config
Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
- output_config
Specifies the configuration for asynchronous inference invocation outputs.
AsyncInferenceNotificationConfigProperty
- class CfnEndpointConfig.AsyncInferenceNotificationConfigProperty(*, error_topic=None, include_inference_response_in=None, success_topic=None)
Bases:
object
Specifies the configuration for notifications of inference results for asynchronous inference.
- Parameters:
error_topic (
Optional
[str
]) – Amazon SNS topic to post a notification to when an inference fails. If no topic is provided, no notification is sent on failure.include_inference_response_in (
Optional
[Sequence
[str
]]) –CfnEndpointConfig.AsyncInferenceNotificationConfigProperty.IncludeInferenceResponseIn
.success_topic (
Optional
[str
]) – Amazon SNS topic to post a notification to when an inference completes successfully. If no topic is provided, no notification is sent on success.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker async_inference_notification_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" )
Attributes
- error_topic
Amazon SNS topic to post a notification to when an inference fails.
If no topic is provided, no notification is sent on failure.
- include_inference_response_in
CfnEndpointConfig.AsyncInferenceNotificationConfigProperty.IncludeInferenceResponseIn
.
- success_topic
Amazon SNS topic to post a notification to when an inference completes successfully.
If no topic is provided, no notification is sent on success.
AsyncInferenceOutputConfigProperty
- class CfnEndpointConfig.AsyncInferenceOutputConfigProperty(*, kms_key_id=None, notification_config=None, s3_failure_path=None, s3_output_path=None)
Bases:
object
Specifies the configuration for asynchronous inference invocation outputs.
- Parameters:
kms_key_id (
Optional
[str
]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.notification_config (
Union
[IResolvable
,AsyncInferenceNotificationConfigProperty
,Dict
[str
,Any
],None
]) – Specifies the configuration for notifications of inference results for asynchronous inference.s3_failure_path (
Optional
[str
]) –CfnEndpointConfig.AsyncInferenceOutputConfigProperty.S3FailurePath
.s3_output_path (
Optional
[str
]) – The Amazon S3 location to upload inference responses to.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker async_inference_output_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceOutputConfigProperty( kms_key_id="kmsKeyId", notification_config=sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" ), s3_failure_path="s3FailurePath", s3_output_path="s3OutputPath" )
Attributes
- kms_key_id
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
- notification_config
Specifies the configuration for notifications of inference results for asynchronous inference.
- s3_failure_path
CfnEndpointConfig.AsyncInferenceOutputConfigProperty.S3FailurePath
.
- s3_output_path
The Amazon S3 location to upload inference responses to.
CaptureContentTypeHeaderProperty
- class CfnEndpointConfig.CaptureContentTypeHeaderProperty(*, csv_content_types=None, json_content_types=None)
Bases:
object
Specifies the JSON and CSV content types of the data that the endpoint captures.
- Parameters:
csv_content_types (
Optional
[Sequence
[str
]]) – A list of the CSV content types of the data that the endpoint captures. For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.json_content_types (
Optional
[Sequence
[str
]]) – A list of the JSON content types of the data that the endpoint captures. For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker capture_content_type_header_property = sagemaker.CfnEndpointConfig.CaptureContentTypeHeaderProperty( csv_content_types=["csvContentTypes"], json_content_types=["jsonContentTypes"] )
Attributes
- csv_content_types
A list of the CSV content types of the data that the endpoint captures.
For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.
- json_content_types
A list of the JSON content types of the data that the endpoint captures.
For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.
CaptureOptionProperty
- class CfnEndpointConfig.CaptureOptionProperty(*, capture_mode)
Bases:
object
Specifies whether the endpoint captures input data or output data.
- Parameters:
capture_mode (
str
) – Specifies whether the endpoint captures input data or output data.- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker capture_option_property = sagemaker.CfnEndpointConfig.CaptureOptionProperty( capture_mode="captureMode" )
Attributes
- capture_mode
Specifies whether the endpoint captures input data or output data.
ClarifyExplainerConfigProperty
- class CfnEndpointConfig.ClarifyExplainerConfigProperty(*, shap_config, enable_explanations=None, inference_config=None)
Bases:
object
- Parameters:
shap_config (
Union
[IResolvable
,ClarifyShapConfigProperty
,Dict
[str
,Any
]]) –CfnEndpointConfig.ClarifyExplainerConfigProperty.ShapConfig
.enable_explanations (
Optional
[str
]) –CfnEndpointConfig.ClarifyExplainerConfigProperty.EnableExplanations
.inference_config (
Union
[IResolvable
,ClarifyInferenceConfigProperty
,Dict
[str
,Any
],None
]) –CfnEndpointConfig.ClarifyExplainerConfigProperty.InferenceConfig
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker clarify_explainer_config_property = sagemaker.CfnEndpointConfig.ClarifyExplainerConfigProperty( shap_config=sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty( shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), # the properties below are optional number_of_samples=123, seed=123, text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False ), # the properties below are optional enable_explanations="enableExplanations", inference_config=sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 ) )
Attributes
- enable_explanations
CfnEndpointConfig.ClarifyExplainerConfigProperty.EnableExplanations
.
- inference_config
CfnEndpointConfig.ClarifyExplainerConfigProperty.InferenceConfig
.
- shap_config
CfnEndpointConfig.ClarifyExplainerConfigProperty.ShapConfig
.
ClarifyInferenceConfigProperty
- class CfnEndpointConfig.ClarifyInferenceConfigProperty(*, content_template=None, feature_headers=None, features_attribute=None, feature_types=None, label_attribute=None, label_headers=None, label_index=None, max_payload_in_mb=None, max_record_count=None, probability_attribute=None, probability_index=None)
Bases:
object
- Parameters:
content_template (
Optional
[str
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.ContentTemplate
.feature_headers (
Optional
[Sequence
[str
]]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.FeatureHeaders
.features_attribute (
Optional
[str
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.FeaturesAttribute
.feature_types (
Optional
[Sequence
[str
]]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.FeatureTypes
.label_attribute (
Optional
[str
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.LabelAttribute
.label_headers (
Optional
[Sequence
[str
]]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.LabelHeaders
.label_index (
Union
[int
,float
,None
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.LabelIndex
.max_payload_in_mb (
Union
[int
,float
,None
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.MaxPayloadInMB
.max_record_count (
Union
[int
,float
,None
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.MaxRecordCount
.probability_attribute (
Optional
[str
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.ProbabilityAttribute
.probability_index (
Union
[int
,float
,None
]) –CfnEndpointConfig.ClarifyInferenceConfigProperty.ProbabilityIndex
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker clarify_inference_config_property = sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 )
Attributes
- content_template
CfnEndpointConfig.ClarifyInferenceConfigProperty.ContentTemplate
.
- feature_headers
CfnEndpointConfig.ClarifyInferenceConfigProperty.FeatureHeaders
.
- feature_types
CfnEndpointConfig.ClarifyInferenceConfigProperty.FeatureTypes
.
- features_attribute
CfnEndpointConfig.ClarifyInferenceConfigProperty.FeaturesAttribute
.
- label_attribute
CfnEndpointConfig.ClarifyInferenceConfigProperty.LabelAttribute
.
- label_headers
CfnEndpointConfig.ClarifyInferenceConfigProperty.LabelHeaders
.
- label_index
CfnEndpointConfig.ClarifyInferenceConfigProperty.LabelIndex
.
- max_payload_in_mb
CfnEndpointConfig.ClarifyInferenceConfigProperty.MaxPayloadInMB
.
- max_record_count
CfnEndpointConfig.ClarifyInferenceConfigProperty.MaxRecordCount
.
- probability_attribute
CfnEndpointConfig.ClarifyInferenceConfigProperty.ProbabilityAttribute
.
- probability_index
CfnEndpointConfig.ClarifyInferenceConfigProperty.ProbabilityIndex
.
ClarifyShapBaselineConfigProperty
- class CfnEndpointConfig.ClarifyShapBaselineConfigProperty(*, mime_type=None, shap_baseline=None, shap_baseline_uri=None)
Bases:
object
- Parameters:
mime_type (
Optional
[str
]) –CfnEndpointConfig.ClarifyShapBaselineConfigProperty.MimeType
.shap_baseline (
Optional
[str
]) –CfnEndpointConfig.ClarifyShapBaselineConfigProperty.ShapBaseline
.shap_baseline_uri (
Optional
[str
]) –CfnEndpointConfig.ClarifyShapBaselineConfigProperty.ShapBaselineUri
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker clarify_shap_baseline_config_property = sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" )
Attributes
- mime_type
CfnEndpointConfig.ClarifyShapBaselineConfigProperty.MimeType
.
- shap_baseline
CfnEndpointConfig.ClarifyShapBaselineConfigProperty.ShapBaseline
.
- shap_baseline_uri
CfnEndpointConfig.ClarifyShapBaselineConfigProperty.ShapBaselineUri
.
ClarifyShapConfigProperty
- class CfnEndpointConfig.ClarifyShapConfigProperty(*, shap_baseline_config, number_of_samples=None, seed=None, text_config=None, use_logit=None)
Bases:
object
- Parameters:
shap_baseline_config (
Union
[IResolvable
,ClarifyShapBaselineConfigProperty
,Dict
[str
,Any
]]) –CfnEndpointConfig.ClarifyShapConfigProperty.ShapBaselineConfig
.number_of_samples (
Union
[int
,float
,None
]) –CfnEndpointConfig.ClarifyShapConfigProperty.NumberOfSamples
.seed (
Union
[int
,float
,None
]) –CfnEndpointConfig.ClarifyShapConfigProperty.Seed
.text_config (
Union
[IResolvable
,ClarifyTextConfigProperty
,Dict
[str
,Any
],None
]) –CfnEndpointConfig.ClarifyShapConfigProperty.TextConfig
.use_logit (
Union
[bool
,IResolvable
,None
]) –CfnEndpointConfig.ClarifyShapConfigProperty.UseLogit
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker clarify_shap_config_property = sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty( shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), # the properties below are optional number_of_samples=123, seed=123, text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False )
Attributes
- number_of_samples
CfnEndpointConfig.ClarifyShapConfigProperty.NumberOfSamples
.
- seed
CfnEndpointConfig.ClarifyShapConfigProperty.Seed
.
- shap_baseline_config
CfnEndpointConfig.ClarifyShapConfigProperty.ShapBaselineConfig
.
- text_config
CfnEndpointConfig.ClarifyShapConfigProperty.TextConfig
.
- use_logit
CfnEndpointConfig.ClarifyShapConfigProperty.UseLogit
.
ClarifyTextConfigProperty
- class CfnEndpointConfig.ClarifyTextConfigProperty(*, granularity, language)
Bases:
object
- Parameters:
granularity (
str
) –CfnEndpointConfig.ClarifyTextConfigProperty.Granularity
.language (
str
) –CfnEndpointConfig.ClarifyTextConfigProperty.Language
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker clarify_text_config_property = sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty( granularity="granularity", language="language" )
Attributes
- granularity
CfnEndpointConfig.ClarifyTextConfigProperty.Granularity
.
- language
CfnEndpointConfig.ClarifyTextConfigProperty.Language
.
DataCaptureConfigProperty
- class CfnEndpointConfig.DataCaptureConfigProperty(*, capture_options, destination_s3_uri, initial_sampling_percentage, capture_content_type_header=None, enable_capture=None, kms_key_id=None)
Bases:
object
Specifies the configuration of your endpoint for model monitor data capture.
- Parameters:
capture_options (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CaptureOptionProperty
,Dict
[str
,Any
]]]]) – Specifies whether the endpoint captures input data to your model, output data from your model, or both.destination_s3_uri (
str
) – The S3 bucket where model monitor stores captured data.initial_sampling_percentage (
Union
[int
,float
]) – The percentage of data to capture.capture_content_type_header (
Union
[IResolvable
,CaptureContentTypeHeaderProperty
,Dict
[str
,Any
],None
]) – A list of the JSON and CSV content type that the endpoint captures.enable_capture (
Union
[bool
,IResolvable
,None
]) – Set toTrue
to enable data capture.kms_key_id (
Optional
[str
]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html) request. For more information, see Using Key Policies in AWS KMS (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the AWS Key Management Service Developer Guide.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker data_capture_config_property = sagemaker.CfnEndpointConfig.DataCaptureConfigProperty( capture_options=[sagemaker.CfnEndpointConfig.CaptureOptionProperty( capture_mode="captureMode" )], destination_s3_uri="destinationS3Uri", initial_sampling_percentage=123, # the properties below are optional capture_content_type_header=sagemaker.CfnEndpointConfig.CaptureContentTypeHeaderProperty( csv_content_types=["csvContentTypes"], json_content_types=["jsonContentTypes"] ), enable_capture=False, kms_key_id="kmsKeyId" )
Attributes
- capture_content_type_header
A list of the JSON and CSV content type that the endpoint captures.
- capture_options
Specifies whether the endpoint captures input data to your model, output data from your model, or both.
- destination_s3_uri
The S3 bucket where model monitor stores captured data.
- enable_capture
Set to
True
to enable data capture.
- initial_sampling_percentage
The percentage of data to capture.
- kms_key_id
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.
The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html) request. For more information, see Using Key Policies in AWS KMS (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the AWS Key Management Service Developer Guide.
ExplainerConfigProperty
- class CfnEndpointConfig.ExplainerConfigProperty(*, clarify_explainer_config=None)
Bases:
object
- Parameters:
clarify_explainer_config (
Union
[IResolvable
,ClarifyExplainerConfigProperty
,Dict
[str
,Any
],None
]) –CfnEndpointConfig.ExplainerConfigProperty.ClarifyExplainerConfig
.- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker explainer_config_property = sagemaker.CfnEndpointConfig.ExplainerConfigProperty( clarify_explainer_config=sagemaker.CfnEndpointConfig.ClarifyExplainerConfigProperty( shap_config=sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty( shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), # the properties below are optional number_of_samples=123, seed=123, text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False ), # the properties below are optional enable_explanations="enableExplanations", inference_config=sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 ) ) )
Attributes
- clarify_explainer_config
CfnEndpointConfig.ExplainerConfigProperty.ClarifyExplainerConfig
.
ProductionVariantProperty
- class CfnEndpointConfig.ProductionVariantProperty(*, initial_variant_weight, model_name, variant_name, accelerator_type=None, container_startup_health_check_timeout_in_seconds=None, enable_ssm_access=None, initial_instance_count=None, instance_type=None, model_data_download_timeout_in_seconds=None, serverless_config=None, volume_size_in_gb=None)
Bases:
object
Specifies a model that you want to host and the resources to deploy for hosting it.
If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying the
InitialVariantWeight
objects.- Parameters:
initial_variant_weight (
Union
[int
,float
]) – Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of theVariantWeight
to the sum of allVariantWeight
values across all ProductionVariants. If unspecified, it defaults to 1.0.model_name (
str
) – The name of the model that you want to host. This is the name that you specified when creating the model.variant_name (
str
) – The name of the production variant.accelerator_type (
Optional
[str
]) –The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker . For more information, see Using Elastic Inference in Amazon SageMaker .
container_startup_health_check_timeout_in_seconds (
Union
[int
,float
,None
]) –CfnEndpointConfig.ProductionVariantProperty.ContainerStartupHealthCheckTimeoutInSeconds
.enable_ssm_access (
Union
[bool
,IResolvable
,None
]) –CfnEndpointConfig.ProductionVariantProperty.EnableSSMAccess
.initial_instance_count (
Union
[int
,float
,None
]) – Number of instances to launch initially.instance_type (
Optional
[str
]) – The ML compute instance type.model_data_download_timeout_in_seconds (
Union
[int
,float
,None
]) –CfnEndpointConfig.ProductionVariantProperty.ModelDataDownloadTimeoutInSeconds
.serverless_config (
Union
[IResolvable
,ServerlessConfigProperty
,Dict
[str
,Any
],None
]) – The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.volume_size_in_gb (
Union
[int
,float
,None
]) –CfnEndpointConfig.ProductionVariantProperty.VolumeSizeInGB
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker production_variant_property = sagemaker.CfnEndpointConfig.ProductionVariantProperty( initial_variant_weight=123, model_name="modelName", variant_name="variantName", # the properties below are optional accelerator_type="acceleratorType", container_startup_health_check_timeout_in_seconds=123, enable_ssm_access=False, initial_instance_count=123, instance_type="instanceType", model_data_download_timeout_in_seconds=123, serverless_config=sagemaker.CfnEndpointConfig.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, # the properties below are optional provisioned_concurrency=123 ), volume_size_in_gb=123 )
Attributes
- accelerator_type
The size of the Elastic Inference (EI) instance to use for the production variant.
EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker . For more information, see Using Elastic Inference in Amazon SageMaker .
- container_startup_health_check_timeout_in_seconds
CfnEndpointConfig.ProductionVariantProperty.ContainerStartupHealthCheckTimeoutInSeconds
.
- enable_ssm_access
CfnEndpointConfig.ProductionVariantProperty.EnableSSMAccess
.
- initial_instance_count
Number of instances to launch initially.
- initial_variant_weight
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.
The traffic to a production variant is determined by the ratio of the
VariantWeight
to the sum of allVariantWeight
values across all ProductionVariants. If unspecified, it defaults to 1.0.
- instance_type
The ML compute instance type.
- model_data_download_timeout_in_seconds
CfnEndpointConfig.ProductionVariantProperty.ModelDataDownloadTimeoutInSeconds
.
- model_name
The name of the model that you want to host.
This is the name that you specified when creating the model.
- serverless_config
The serverless configuration for an endpoint.
Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
- variant_name
The name of the production variant.
- volume_size_in_gb
CfnEndpointConfig.ProductionVariantProperty.VolumeSizeInGB
.
ServerlessConfigProperty
- class CfnEndpointConfig.ServerlessConfigProperty(*, max_concurrency, memory_size_in_mb, provisioned_concurrency=None)
Bases:
object
Specifies the serverless configuration for an endpoint variant.
- Parameters:
max_concurrency (
Union
[int
,float
]) – The maximum number of concurrent invocations your serverless endpoint can process.memory_size_in_mb (
Union
[int
,float
]) – The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.provisioned_concurrency (
Union
[int
,float
,None
]) –CfnEndpointConfig.ServerlessConfigProperty.ProvisionedConcurrency
.
- Link:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker serverless_config_property = sagemaker.CfnEndpointConfig.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, # the properties below are optional provisioned_concurrency=123 )
Attributes
- max_concurrency
The maximum number of concurrent invocations your serverless endpoint can process.
- memory_size_in_mb
The memory size of your serverless endpoint.
Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
- provisioned_concurrency
CfnEndpointConfig.ServerlessConfigProperty.ProvisionedConcurrency
.