Package software.amazon.awscdk
AWS Cloud Development Kit Library
The AWS CDK construct library provides APIs to define your CDK application and add CDK constructs to the application.
Usage
Upgrade from CDK 1.x
When upgrading from CDK 1.x, remove all dependencies to individual CDK packages from your dependencies file and follow the rest of the sections.
Installation
To use this package, you need to declare this package and the constructs
package as
dependencies.
According to the kind of project you are developing:
For projects that are CDK libraries in NPM, declare them both under the devDependencies
and peerDependencies
sections.
To make sure your library is compatible with the widest range of CDK versions: pick the minimum aws-cdk-lib
version
that your library requires; declare a range dependency with a caret on that version in peerDependencies, and declare a
point version dependency on that version in devDependencies.
For example, let's say the minimum version your library needs is 2.38.0
. Your package.json
should look like this:
{ "peerDependencies": { "aws-cdk-lib": "^2.38.0", "constructs": "^10.0.0" }, "devDependencies": { /* Install the oldest version for testing so we don't accidentally use features from a newer version than we declare */ "aws-cdk-lib": "2.38.0" } }
For CDK apps, declare them under the dependencies
section. Use a caret so you always get the latest version:
{ "dependencies": { "aws-cdk-lib": "^2.38.0", "constructs": "^10.0.0" } }
Use in your code
Classic import
You can use a classic import to get access to each service namespaces:
import software.amazon.awscdk.Stack; import software.amazon.awscdk.App; import software.amazon.awscdk.services.s3.*; App app = new App(); Stack stack = new Stack(app, "TestStack"); new Bucket(stack, "TestBucket");
Barrel import
Alternatively, you can use "barrel" imports:
import software.amazon.awscdk.App; import software.amazon.awscdk.Stack; import software.amazon.awscdk.services.s3.Bucket; App app = new App(); Stack stack = new Stack(app, "TestStack"); new Bucket(stack, "TestBucket");
Stacks and Stages
A Stack
is the smallest physical unit of deployment, and maps directly onto
a CloudFormation Stack. You define a Stack by defining a subclass of Stack
-- let's call it MyStack
-- and instantiating the constructs that make up
your application in MyStack
's constructor. You then instantiate this stack
one or more times to define different instances of your application. For example,
you can instantiate it once using few and cheap EC2 instances for testing,
and once again using more and bigger EC2 instances for production.
When your application grows, you may decide that it makes more sense to split it
out across multiple Stack
classes. This can happen for a number of reasons:
- You could be starting to reach the maximum number of resources allowed in a single stack (this is currently 500).
- You could decide you want to separate out stateful resources and stateless resources into separate stacks, so that it becomes easy to tear down and recreate the stacks that don't have stateful resources.
- There could be a single stack with resources (like a VPC) that are shared between multiple instances of other stacks containing your applications.
As soon as your conceptual application starts to encompass multiple stacks, it is convenient to wrap them in another construct that represents your logical application. You can then treat that new unit the same way you used to be able to treat a single stack: by instantiating it multiple times for different instances of your application.
You can define a custom subclass of Stage
, holding one or more
Stack
s, to represent a single logical instance of your application.
As a final note: Stack
s are not a unit of reuse. They describe physical
deployment layouts, and as such are best left to application builders to
organize their deployments with. If you want to vend a reusable construct,
define it as a subclasses of Construct
: the consumers of your construct
will decide where to place it in their own stacks.
Stack Synthesizers
Each Stack has a synthesizer, an object that determines how and where the Stack should be synthesized and deployed. The synthesizer controls aspects like:
- How does the stack reference assets? (Either through CloudFormation parameters the CLI supplies, or because the Stack knows a predefined location where assets will be uploaded).
- What roles are used to deploy the stack? These can be bootstrapped roles, roles created in some other way, or just the CLI's current credentials.
The following synthesizers are available:
DefaultStackSynthesizer
: recommended. Uses predefined asset locations and roles created by the modern bootstrap template. Access control is done by controlling who can assume the deploy role. This is the default stack synthesizer in CDKv2.LegacyStackSynthesizer
: Uses CloudFormation parameters to communicate asset locations, and the CLI's current permissions to deploy stacks. This is the default stack synthesizer in CDKv1.CliCredentialsStackSynthesizer
: Uses predefined asset locations, and the CLI's current permissions.
Each of these synthesizers takes configuration arguments. To configure a stack with a synthesizer, pass it as one of its properties:
MyStack.Builder.create(app, "MyStack") .synthesizer(DefaultStackSynthesizer.Builder.create() .fileAssetsBucketName("amzn-s3-demo-bucket") .build()) .build();
For more information on bootstrapping accounts and customizing synthesis, see Bootstrapping in the CDK Developer Guide.
Nested Stacks
Nested stacks are stacks created as part of other stacks. You create a nested stack within another stack by using the NestedStack
construct.
As your infrastructure grows, common patterns can emerge in which you declare the same components in multiple templates. You can separate out these common components and create dedicated templates for them. Then use the resource in your template to reference other templates, creating nested stacks.
For example, assume that you have a load balancer configuration that you use for most of your stacks. Instead of copying and pasting the same configurations into your templates, you can create a dedicated template for the load balancer. Then, you just use the resource to reference that template from within other templates.
The following example will define a single top-level stack that contains two nested stacks: each one with a single Amazon S3 bucket:
public class MyNestedStack extends NestedStack { public MyNestedStack(Construct scope, String id) { this(scope, id, null); } public MyNestedStack(Construct scope, String id, NestedStackProps props) { super(scope, id, props); new Bucket(this, "NestedBucket"); } } public class MyParentStack extends Stack { public MyParentStack(Construct scope, String id) { this(scope, id, null); } public MyParentStack(Construct scope, String id, StackProps props) { super(scope, id, props); new MyNestedStack(this, "Nested1"); new MyNestedStack(this, "Nested2"); } }
Resources references across nested/parent boundaries (even with multiple levels of nesting) will be wired by the AWS CDK
through CloudFormation parameters and outputs. When a resource from a parent stack is referenced by a nested stack,
a CloudFormation parameter will automatically be added to the nested stack and assigned from the parent; when a resource
from a nested stack is referenced by a parent stack, a CloudFormation output will be automatically be added to the
nested stack and referenced using Fn::GetAtt "Outputs.Xxx"
from the parent.
Nested stacks also support the use of Docker image and file assets.
Accessing resources in a different stack
You can access resources in a different stack, as long as they are in the
same account and AWS Region (see next section for an exception).
The following example defines the stack stack1
,
which defines an Amazon S3 bucket. Then it defines a second stack, stack2
,
which takes the bucket from stack1 as a constructor property.
Map<String, String> prod = Map.of("account", "123456789012", "region", "us-east-1"); StackThatProvidesABucket stack1 = StackThatProvidesABucket.Builder.create(app, "Stack1").env(prod).build(); // stack2 will take a property { bucket: IBucket } StackThatExpectsABucket stack2 = new StackThatExpectsABucket(app, "Stack2", new StackThatExpectsABucketProps() .bucket(stack1.getBucket()) .env(prod) );
If the AWS CDK determines that the resource is in the same account and Region, but in a different stack, it automatically synthesizes AWS CloudFormation Exports in the producing stack and an Fn::ImportValue in the consuming stack to transfer that information from one stack to the other.
Accessing resources in a different stack and region
This feature is currently experimental
You can enable the Stack property crossRegionReferences
in order to access resources in a different stack and region. With this feature flag
enabled it is possible to do something like creating a CloudFront distribution in us-east-2
and
an ACM certificate in us-east-1
.
Stack stack1 = Stack.Builder.create(app, "Stack1") .env(Environment.builder() .region("us-east-1") .build()) .crossRegionReferences(true) .build(); Certificate cert = Certificate.Builder.create(stack1, "Cert") .domainName("*.example.com") .validation(CertificateValidation.fromDns(PublicHostedZone.fromHostedZoneId(stack1, "Zone", "Z0329774B51CGXTDQV3X"))) .build(); Stack stack2 = Stack.Builder.create(app, "Stack2") .env(Environment.builder() .region("us-east-2") .build()) .crossRegionReferences(true) .build(); Distribution.Builder.create(stack2, "Distribution") .defaultBehavior(BehaviorOptions.builder() .origin(new HttpOrigin("example.com")) .build()) .domainNames(List.of("dev.example.com")) .certificate(cert) .build();
When the AWS CDK determines that the resource is in a different stack and is in a different region, it will "export" the value by creating a custom resource in the producing stack which creates SSM Parameters in the consuming region for each exported value. The parameters will be created with the name '/cdk/exports/${consumingStackName}/${export-name}'. In order to "import" the exports into the consuming stack a SSM Dynamic reference is used to reference the SSM parameter which was created.
In order to mimic strong references, a Custom Resource is also created in the consuming stack which marks the SSM parameters as being "imported". When a parameter has been successfully imported, the producing stack cannot update the value.
[!NOTE] As a consequence of this feature being built on a Custom Resource, we are restricted to a CloudFormation response body size limitation of 4096 bytes. To prevent deployment errors related to the Custom Resource Provider response body being too large, we recommend limiting the use of nested stacks and minimizing the length of stack names. Doing this will prevent SSM parameter names from becoming too long which will reduce the size of the response body.
See the adr for more details on this feature.
Removing automatic cross-stack references
The automatic references created by CDK when you use resources across stacks are convenient, but may block your deployments if you want to remove the resources that are referenced in this way. You will see an error like:
Export Stack1:ExportsOutputFnGetAtt-****** cannot be deleted as it is in use by Stack1
Let's say there is a Bucket in the stack1
, and the stack2
references its
bucket.bucketName
. You now want to remove the bucket and run into the error above.
It's not safe to remove stack1.bucket
while stack2
is still using it, so
unblocking yourself from this is a two-step process. This is how it works:
DEPLOYMENT 1: break the relationship
- Make sure
stack2
no longer referencesbucket.bucketName
(maybe the consumer stack now uses its own bucket, or it writes to an AWS DynamoDB table, or maybe you just remove the Lambda Function altogether). - In the
stack1
class, callthis.exportValue(this.bucket.bucketName)
. This will make sure the CloudFormation Export continues to exist while the relationship between the two stacks is being broken. - Deploy (this will effectively only change the
stack2
, but it's safe to deploy both).
DEPLOYMENT 2: remove the resource
- You are now free to remove the
bucket
resource fromstack1
. - Don't forget to remove the
exportValue()
call as well. - Deploy again (this time only the
stack1
will be changed -- the bucket will be deleted).
Durations
To make specifications of time intervals unambiguous, a single class called
Duration
is used throughout the AWS Construct Library by all constructs
that that take a time interval as a parameter (be it for a timeout, a
rate, or something else).
An instance of Duration is constructed by using one of the static factory methods on it:
Duration.seconds(300); // 5 minutes Duration.minutes(5); // 5 minutes Duration.hours(1); // 1 hour Duration.days(7); // 7 days Duration.parse("PT5M");
Durations can be added or subtracted together:
Duration.minutes(1).plus(Duration.seconds(60)); // 2 minutes Duration.minutes(5).minus(Duration.seconds(10));
Size (Digital Information Quantity)
To make specification of digital storage quantities unambiguous, a class called
Size
is available.
An instance of Size
is initialized through one of its static factory methods:
Size.kibibytes(200); // 200 KiB Size.mebibytes(5); // 5 MiB Size.gibibytes(40); // 40 GiB Size.tebibytes(200); // 200 TiB Size.pebibytes(3);
Instances of Size
created with one of the units can be converted into others.
By default, conversion to a higher unit will fail if the conversion does not produce
a whole number. This can be overridden by unsetting integral
property.
Size.mebibytes(2).toKibibytes(); // yields 2048 Size.kibibytes(2050).toMebibytes(SizeConversionOptions.builder().rounding(SizeRoundingBehavior.FLOOR).build());
Secrets
To help avoid accidental storage of secrets as plain text, we use the SecretValue
type to
represent secrets. Any construct that takes a value that should be a secret (such as
a password or an access key) will take a parameter of type SecretValue
.
The best practice is to store secrets in AWS Secrets Manager and reference them using SecretValue.secretsManager
:
SecretValue secret = SecretValue.secretsManager("secretId", SecretsManagerSecretOptions.builder() .jsonField("password") // optional: key of a JSON field to retrieve (defaults to all content), .versionId("id") // optional: id of the version (default AWSCURRENT) .versionStage("stage") .build());
Using AWS Secrets Manager is the recommended way to reference secrets in a CDK app.
SecretValue
also supports the following secret sources:
SecretValue.unsafePlainText(secret)
: stores the secret as plain text in your app and the resulting template (not recommended).SecretValue.secretsManager(secret)
: refers to a secret stored in Secrets ManagerSecretValue.ssmSecure(param, version)
: refers to a secret stored as a SecureString in the SSM Parameter Store. If you don't specify the exact version, AWS CloudFormation uses the latest version of the parameter.SecretValue.cfnParameter(param)
: refers to a secret passed through a CloudFormation parameter (must haveNoEcho: true
).SecretValue.cfnDynamicReference(dynref)
: refers to a secret described by a CloudFormation dynamic reference (used byssmSecure
andsecretsManager
).SecretValue.resourceAttribute(attr)
: refers to a secret returned from a CloudFormation resource creation.
SecretValue
s should only be passed to constructs that accept properties of type
SecretValue
. These constructs are written to ensure your secrets will not be
exposed where they shouldn't be. If you try to use a SecretValue
in a
different location, an error about unsafe secret usage will be thrown at
synthesis time.
If you rotate the secret's value in Secrets Manager, you must also change at least one property on the resource where you are using the secret, to force CloudFormation to re-read the secret.
SecretValue.ssmSecure()
is only supported for a limited set of resources.
Click here for a list of supported resources and properties.
ARN manipulation
Sometimes you will need to put together or pick apart Amazon Resource Names
(ARNs). The functions stack.formatArn()
and stack.splitArn()
exist for
this purpose.
formatArn()
can be used to build an ARN from components. It will automatically
use the region and account of the stack you're calling it on:
Stack stack; // Builds "arn:<PARTITION>:lambda:<REGION>:<ACCOUNT>:function:MyFunction" stack.formatArn(ArnComponents.builder() .service("lambda") .resource("function") .arnFormat(ArnFormat.COLON_RESOURCE_NAME) .resourceName("MyFunction") .build());
splitArn()
can be used to get a single component from an ARN. splitArn()
will correctly deal with both literal ARNs and deploy-time values (tokens),
but in case of a deploy-time value be aware that the result will be another
deploy-time value which cannot be inspected in the CDK application.
Stack stack; // Extracts the function name out of an AWS Lambda Function ARN ArnComponents arnComponents = stack.splitArn(arn, ArnFormat.COLON_RESOURCE_NAME); String functionName = arnComponents.getResourceName();
Note that the format of the resource separator depends on the service and
may be any of the values supported by ArnFormat
. When dealing with these
functions, it is important to know the format of the ARN you are dealing with.
For an exhaustive list of ARN formats used in AWS, see AWS ARNs and Namespaces in the AWS General Reference.
Dependencies
Construct Dependencies
Sometimes AWS resources depend on other resources, and the creation of one resource must be completed before the next one can be started.
In general, CloudFormation will correctly infer the dependency relationship between resources based on the property values that are used. In the cases where it doesn't, the AWS Construct Library will add the dependency relationship for you.
If you need to add an ordering dependency that is not automatically inferred,
you do so by adding a dependency relationship using
constructA.node.addDependency(constructB)
. This will add a dependency
relationship between all resources in the scope of constructA
and all
resources in the scope of constructB
.
If you want a single object to represent a set of constructs that are not
necessarily in the same scope, you can use a DependencyGroup
. The
following creates a single object that represents a dependency on two
constructs, constructB
and constructC
:
// Declare the dependable object DependencyGroup bAndC = new DependencyGroup(); bAndC.add(constructB); bAndC.add(constructC); // Take the dependency constructA.node.addDependency(bAndC);
Stack Dependencies
Two different stack instances can have a dependency on one another. This
happens when an resource from one stack is referenced in another stack. In
that case, CDK records the cross-stack referencing of resources,
automatically produces the right CloudFormation primitives, and adds a
dependency between the two stacks. You can also manually add a dependency
between two stacks by using the stackA.addDependency(stackB)
method.
A stack dependency has the following implications:
- Cyclic dependencies are not allowed, so if
stackA
is using resources fromstackB
, the reverse is not possible anymore. - Stacks with dependencies between them are treated specially by the CDK
toolkit:
- If
stackA
depends onstackB
, runningcdk deploy stackA
will also automatically deploystackB
. stackB
's deployment will be performed beforestackA
's deployment.
- If
CfnResource Dependencies
To make declaring dependencies between CfnResource
objects easier, you can declare dependencies from one CfnResource
object on another by using the cfnResource1.addDependency(cfnResource2)
method. This method will work for resources both within the same stack and across stacks as it detects the relative location of the two resources and adds the dependency either to the resource or between the relevant stacks, as appropriate. If more complex logic is in needed, you can similarly remove, replace, or view dependencies between CfnResource
objects with the CfnResource
removeDependency
, replaceDependency
, and obtainDependencies
methods, respectively.
Custom Resources
Custom Resources are CloudFormation resources that are implemented by arbitrary user code. They can do arbitrary lookups or modifications during a CloudFormation deployment.
Custom resources are backed by custom resource providers. Commonly, these are Lambda Functions that are deployed in the same deployment as the one that defines the custom resource itself, but they can also be backed by Lambda Functions deployed previously, or code responding to SNS Topic events running on EC2 instances in a completely different account. For more information on custom resource providers, see the next section.
Once you have a provider, each definition of a CustomResource
construct
represents one invocation. A single provider can be used for the implementation
of arbitrarily many custom resource definitions. A single definition looks like
this:
CustomResource.Builder.create(this, "MyMagicalResource") .resourceType("Custom::MyCustomResource") // must start with 'Custom::' // the resource properties .properties(Map.of( "Property1", "foo", "Property2", "bar")) // the ARN of the provider (SNS/Lambda) which handles // CREATE, UPDATE or DELETE events for this resource type // see next section for details .serviceToken("ARN") .build();
Custom Resource Providers
Custom resources are backed by a custom resource provider which can be implemented in one of the following ways. The following table compares the various provider types (ordered from low-level to high-level):
| Provider | Compute Type | Error Handling | Submit to CloudFormation | Max Timeout | Language | Footprint | | -------------------------------------------------------------------- | :----------: | :------------: | :----------------------: | :-------------: | :------: | :-------: | | sns.Topic | Self-managed | Manual | Manual | Unlimited | Any | Depends | | lambda.Function | AWS Lambda | Manual | Manual | 15min | Any | Small | | core.CustomResourceProvider | AWS Lambda | Auto | Auto | 15min | Node.js | Small | | custom-resources.Provider | AWS Lambda | Auto | Auto | Unlimited Async | Any | Large |
Legend:
- Compute type: which type of compute can be used to execute the handler.
- Error Handling: whether errors thrown by handler code are automatically trapped and a FAILED response is submitted to CloudFormation. If this is "Manual", developers must take care of trapping errors. Otherwise, events could cause stacks to hang.
- Submit to CloudFormation: whether the framework takes care of submitting SUCCESS/FAILED responses to CloudFormation through the event's response URL.
- Max Timeout: maximum allows/possible timeout.
- Language: which programming languages can be used to implement handlers.
- Footprint: how many resources are used by the provider framework itself.
A NOTE ABOUT SINGLETONS
When defining resources for a custom resource provider, you will likely want to define them as a stack singleton so that only a single instance of the provider is created in your stack and which is used by all custom resources of that type.
Here is a basic pattern for defining stack singletons in the CDK. The following examples ensures that only a single SNS topic is defined:
public Topic getOrCreate(Construct scope) { Stack stack = Stack.of(scope); String uniqueid = "GloballyUniqueIdForSingleton"; // For example, a UUID from `uuidgen` IConstruct existing = stack.node.tryFindChild(uniqueid); if (existing) { return (Topic)existing; } return new Topic(stack, uniqueid); }
Amazon SNS Topic
Every time a resource event occurs (CREATE/UPDATE/DELETE), an SNS notification is sent to the SNS topic. Users must process these notifications (e.g. through a fleet of worker hosts) and submit success/failure responses to the CloudFormation service.
You only need to use this type of provider if your custom resource cannot run on AWS Lambda, for reasons other than the 15 minute timeout. If you are considering using this type of provider because you want to write a custom resource provider that may need to wait for more than 15 minutes for the API calls to stabilize, have a look at the
custom-resources
module first.Refer to the CloudFormation Custom Resource documentation for information on the contract your custom resource needs to adhere to.
Set serviceToken
to topic.topicArn
in order to use this provider:
Topic topic = new Topic(this, "MyProvider"); CustomResource.Builder.create(this, "MyResource") .serviceToken(topic.getTopicArn()) .build();
AWS Lambda Function
An AWS lambda function is called directly by CloudFormation for all resource events. The handler must take care of explicitly submitting a success/failure response to the CloudFormation service and handle various error cases.
We do not recommend you use this provider type. The CDK has wrappers around Lambda Functions that make them easier to work with.
If you do want to use this provider, refer to the CloudFormation Custom Resource documentation for information on the contract your custom resource needs to adhere to.
Set serviceToken
to lambda.functionArn
to use this provider:
SingletonFunction fn = new SingletonFunction(this, "MyProvider", functionProps); CustomResource.Builder.create(this, "MyResource") .serviceToken(fn.getFunctionArn()) .build();
The core.CustomResourceProvider
class
The class @aws-cdk/core.CustomResourceProvider
offers a basic low-level
framework designed to implement simple and slim custom resource providers. It
currently only supports Node.js-based user handlers, represents permissions as raw
JSON blobs instead of iam.PolicyStatement
objects, and it does not have
support for asynchronous waiting (handler cannot exceed the 15min lambda
timeout). The CustomResourceProviderRuntime
supports runtime nodejs12.x
,
nodejs14.x
, nodejs16.x
, nodejs18.x
.
As an application builder, we do not recommend you use this provider type. This provider exists purely for custom resources that are part of the AWS Construct Library.
The
custom-resources
provider is more convenient to work with and more fully-featured.
The provider has a built-in singleton method which uses the resource type as a stack-unique identifier and returns the service token:
String serviceToken = CustomResourceProvider.getOrCreate(this, "Custom::MyCustomResourceType", CustomResourceProviderProps.builder() .codeDirectory(String.format("%s/my-handler", __dirname)) .runtime(CustomResourceProviderRuntime.NODEJS_18_X) .description("Lambda function created by the custom resource provider") .build()); CustomResource.Builder.create(this, "MyResource") .resourceType("Custom::MyCustomResourceType") .serviceToken(serviceToken) .build();
The directory (my-handler
in the above example) must include an index.js
file. It cannot import
external dependencies or files outside this directory. It must export an async
function named handler
. This function accepts the CloudFormation resource
event object and returns an object with the following structure:
exports.handler = async function(event) { const id = event.PhysicalResourceId; // only for "Update" and "Delete" const props = event.ResourceProperties; const oldProps = event.OldResourceProperties; // only for "Update"s switch (event.RequestType) { case "Create": // ... case "Update": // ... // if an error is thrown, a FAILED response will be submitted to CFN throw new Error('Failed!'); case "Delete": // ... } return { // (optional) the value resolved from `resource.ref` // defaults to "event.PhysicalResourceId" or "event.RequestId" PhysicalResourceId: "REF", // (optional) calling `resource.getAtt("Att1")` on the custom resource in the CDK app // will return the value "BAR". Data: { Att1: "BAR", Att2: "BAZ" }, // (optional) user-visible message Reason: "User-visible message", // (optional) hides values from the console NoEcho: true }; }
Here is an complete example of a custom resource that summarizes two numbers:
sum-handler/index.js
:
exports.handler = async (e) => { return { Data: { Result: e.ResourceProperties.lhs + e.ResourceProperties.rhs, }, }; };
sum.ts
:
import software.constructs.Construct; import software.amazon.awscdk.CustomResource; import software.amazon.awscdk.CustomResourceProvider; import software.amazon.awscdk.CustomResourceProviderRuntime; import software.amazon.awscdk.Token; public class SumProps { private Number lhs; public Number getLhs() { return this.lhs; } public SumProps lhs(Number lhs) { this.lhs = lhs; return this; } private Number rhs; public Number getRhs() { return this.rhs; } public SumProps rhs(Number rhs) { this.rhs = rhs; return this; } } public class Sum extends Construct { public final Number result; public Sum(Construct scope, String id, SumProps props) { super(scope, id); String resourceType = "Custom::Sum"; String serviceToken = CustomResourceProvider.getOrCreate(this, resourceType, CustomResourceProviderProps.builder() .codeDirectory(String.format("%s/sum-handler", __dirname)) .runtime(CustomResourceProviderRuntime.NODEJS_18_X) .build()); CustomResource resource = CustomResource.Builder.create(this, "Resource") .resourceType(resourceType) .serviceToken(serviceToken) .properties(Map.of( "lhs", props.getLhs(), "rhs", props.getRhs())) .build(); this.result = Token.asNumber(resource.getAtt("Result")); } }
Usage will look like this:
Sum sum = new Sum(this, "MySum", new SumProps().lhs(40).rhs(2)); CfnOutput.Builder.create(this, "Result").value(Token.asString(sum.getResult())).build();
To access the ARN of the provider's AWS Lambda function role, use the getOrCreateProvider()
built-in singleton method:
CustomResourceProvider provider = CustomResourceProvider.getOrCreateProvider(this, "Custom::MyCustomResourceType", CustomResourceProviderProps.builder() .codeDirectory(String.format("%s/my-handler", __dirname)) .runtime(CustomResourceProviderRuntime.NODEJS_18_X) .build()); String roleArn = provider.getRoleArn();
This role ARN can then be used in resource-based IAM policies.
To add IAM policy statements to this role, use addToRolePolicy()
:
CustomResourceProvider provider = CustomResourceProvider.getOrCreateProvider(this, "Custom::MyCustomResourceType", CustomResourceProviderProps.builder() .codeDirectory(String.format("%s/my-handler", __dirname)) .runtime(CustomResourceProviderRuntime.NODEJS_18_X) .build()); provider.addToRolePolicy(Map.of( "Effect", "Allow", "Action", "s3:GetObject", "Resource", "*"));
Note that addToRolePolicy()
uses direct IAM JSON policy blobs, not a
iam.PolicyStatement
object like you will see in the rest of the CDK.
The Custom Resource Provider Framework
The @aws-cdk/custom-resources
module includes an advanced framework for
implementing custom resource providers.
Handlers are implemented as AWS Lambda functions, which means that they can be
implemented in any Lambda-supported runtime. Furthermore, this provider has an
asynchronous mode, which means that users can provide an isComplete
lambda
function which is called periodically until the operation is complete. This
allows implementing providers that can take up to two hours to stabilize.
Set serviceToken
to provider.serviceToken
to use this type of provider:
Provider provider = Provider.Builder.create(this, "MyProvider") .onEventHandler(onEventHandler) .isCompleteHandler(isCompleteHandler) .build(); CustomResource.Builder.create(this, "MyResource") .serviceToken(provider.getServiceToken()) .build();
See the documentation for more details.
AWS CloudFormation features
A CDK stack synthesizes to an AWS CloudFormation Template. This section explains how this module allows users to access low-level CloudFormation features when needed.
Stack Outputs
CloudFormation stack outputs and exports are created using
the CfnOutput
class:
CfnOutput.Builder.create(this, "OutputName") .value(myBucket.getBucketName()) .description("The name of an S3 bucket") // Optional .exportName("TheAwesomeBucket") .build();
Parameters
CloudFormation templates support the use of Parameters to customize a template. They enable CloudFormation users to input custom values to a template each time a stack is created or updated. While the CDK design philosophy favors using build-time parameterization, users may need to use CloudFormation in a number of cases (for example, when migrating an existing stack to the AWS CDK).
Template parameters can be added to a stack by using the CfnParameter
class:
CfnParameter.Builder.create(this, "MyParameter") .type("Number") .default(1337) .build();
The value of parameters can then be obtained using one of the value
methods.
As parameters are only resolved at deployment time, the values obtained are
placeholder tokens for the real value (Token.isUnresolved()
would return true
for those):
CfnParameter param = CfnParameter.Builder.create(this, "ParameterName").build(); // If the parameter is a String param.getValueAsString(); // If the parameter is a Number param.getValueAsNumber(); // If the parameter is a List param.getValueAsList();
Pseudo Parameters
CloudFormation supports a number of pseudo parameters,
which resolve to useful values at deployment time. CloudFormation pseudo
parameters can be obtained from static members of the Aws
class.
It is generally recommended to access pseudo parameters from the scope's stack
instead, which guarantees the values produced are qualifying the designated
stack, which is essential in cases where resources are shared cross-stack:
// "this" is the current construct Stack stack = Stack.of(this); stack.getAccount(); // Returns the AWS::AccountId for this stack (or the literal value if known) stack.getRegion(); // Returns the AWS::Region for this stack (or the literal value if known) stack.getPartition();
Resource Options
CloudFormation resources can also specify resource
attributes. The CfnResource
class allows
accessing those through the cfnOptions
property:
CfnBucket rawBucket = CfnBucket.Builder.create(this, "Bucket").build(); // -or- CfnBucket rawBucketAlt = (CfnBucket)myBucket.getNode().getDefaultChild(); // then rawBucket.getCfnOptions().getCondition() = CfnCondition.Builder.create(this, "EnableBucket").build(); rawBucket.getCfnOptions().getMetadata() = Map.of( "metadataKey", "MetadataValue");
Resource dependencies (the DependsOn
attribute) is modified using the
cfnResource.addDependency
method:
CfnResource resourceA = new CfnResource(this, "ResourceA", resourceProps); CfnResource resourceB = new CfnResource(this, "ResourceB", resourceProps); resourceB.addDependency(resourceA);
CreationPolicy
Some resources support a CreationPolicy to be specified as a CfnOption.
The creation policy is invoked only when AWS CloudFormation creates the associated resource. Currently, the only AWS CloudFormation resources that support creation policies are CfnAutoScalingGroup
, CfnInstance
, CfnWaitCondition
and CfnFleet
.
The CfnFleet
resource from the aws-appstream
module supports specifying startFleet
as
a property of the creationPolicy on the resource options. Setting it to true will make AWS CloudFormation wait until the fleet is started before continuing with the creation of
resources that depend on the fleet resource.
CfnFleet fleet = CfnFleet.Builder.create(this, "Fleet") .instanceType("stream.standard.small") .name("Fleet") .computeCapacity(ComputeCapacityProperty.builder() .desiredInstances(1) .build()) .imageName("AppStream-AmazonLinux2-09-21-2022") .build(); fleet.getCfnOptions().getCreationPolicy() = CfnCreationPolicy.builder() .startFleet(true) .build();
The properties passed to the level 2 constructs AutoScalingGroup
and Instance
from the
aws-ec2
module abstract what is passed into the CfnOption
properties resourceSignal
and
autoScalingCreationPolicy
, but when using level 1 constructs you can specify these yourself.
The CfnWaitCondition resource from the aws-cloudformation
module suppports the resourceSignal
.
The format of the timeout is PT#H#M#S
. In the example below AWS Cloudformation will wait for
3 success signals to occur within 15 minutes before the status of the resource will be set to
CREATE_COMPLETE
.
CfnResource resource; resource.getCfnOptions().getCreationPolicy() = CfnCreationPolicy.builder() .resourceSignal(CfnResourceSignal.builder() .count(3) .timeout("PR15M") .build()) .build();
Intrinsic Functions and Condition Expressions
CloudFormation supports intrinsic functions. These functions
can be accessed from the Fn
class, which provides type-safe methods for each
intrinsic function as well as condition expressions:
Object myObjectOrArray; Object myArray; // To use Fn::Base64 Fn.base64("SGVsbG8gQ0RLIQo="); // To compose condition expressions: CfnParameter environmentParameter = new CfnParameter(this, "Environment"); Fn.conditionAnd(Fn.conditionEquals("Production", environmentParameter), Fn.conditionNot(Fn.conditionEquals("us-east-1", Aws.REGION))); // To use Fn::ToJsonString Fn.toJsonString(myObjectOrArray); // To use Fn::Length Fn.len(Fn.split(",", myArray));
When working with deploy-time values (those for which Token.isUnresolved
returns true
), idiomatic conditionals from the programming language cannot be
used (the value will not be known until deployment time). When conditional logic
needs to be expressed with un-resolved values, it is necessary to use
CloudFormation conditions by means of the CfnCondition
class:
CfnParameter environmentParameter = new CfnParameter(this, "Environment"); CfnCondition isProd = CfnCondition.Builder.create(this, "IsProduction") .expression(Fn.conditionEquals("Production", environmentParameter)) .build(); // Configuration value that is a different string based on IsProduction String stage = Fn.conditionIf(isProd.logicalId, "Beta", "Prod").toString(); // Make Bucket creation condition to IsProduction by accessing // and overriding the CloudFormation resource Bucket bucket = new Bucket(this, "Bucket"); CfnBucket cfnBucket = (CfnBucket)myBucket.getNode().getDefaultChild(); cfnBucket.getCfnOptions().getCondition() = isProd;
Mappings
CloudFormation mappings are created and queried using the
CfnMappings
class:
CfnMapping regionTable = CfnMapping.Builder.create(this, "RegionTable") .mapping(Map.of( "us-east-1", Map.of( "regionName", "US East (N. Virginia)"), "us-east-2", Map.of( "regionName", "US East (Ohio)"))) .build(); regionTable.findInMap(Aws.REGION, "regionName");
This will yield the following template:
Mappings: RegionTable: us-east-1: regionName: US East (N. Virginia) us-east-2: regionName: US East (Ohio)
Mappings can also be synthesized "lazily"; lazy mappings will only render a "Mappings"
section in the synthesized CloudFormation template if some findInMap
call is unable to
immediately return a concrete value due to one or both of the keys being unresolved tokens
(some value only available at deploy-time).
For example, the following code will not produce anything in the "Mappings" section. The
call to findInMap
will be able to resolve the value during synthesis and simply return
'US East (Ohio)'
.
CfnMapping regionTable = CfnMapping.Builder.create(this, "RegionTable") .mapping(Map.of( "us-east-1", Map.of( "regionName", "US East (N. Virginia)"), "us-east-2", Map.of( "regionName", "US East (Ohio)"))) .lazy(true) .build(); regionTable.findInMap("us-east-2", "regionName");
On the other hand, the following code will produce the "Mappings" section shown above,
since the top-level key is an unresolved token. The call to findInMap
will return a token that resolves to
{ "Fn::FindInMap": [ "RegionTable", { "Ref": "AWS::Region" }, "regionName" ] }
.
CfnMapping regionTable; regionTable.findInMap(Aws.REGION, "regionName");
An optional default value can also be passed to findInMap
. If either key is not found in the map and the mapping is lazy, findInMap
will return the default value and not render the mapping.
If the mapping is not lazy or either key is an unresolved token, the call to findInMap
will return a token that resolves to
{ "Fn::FindInMap": [ "MapName", "TopLevelKey", "SecondLevelKey", { "DefaultValue": "DefaultValue" } ] }
, and the mapping will be rendered.
Note that the AWS::LanguageExtentions
transform is added to enable the default value functionality.
For example, the following code will again not produce anything in the "Mappings" section. The
call to findInMap
will be able to resolve the value during synthesis and simply return
'Region not found'
.
CfnMapping regionTable = CfnMapping.Builder.create(this, "RegionTable") .mapping(Map.of( "us-east-1", Map.of( "regionName", "US East (N. Virginia)"), "us-east-2", Map.of( "regionName", "US East (Ohio)"))) .lazy(true) .build(); regionTable.findInMap("us-west-1", "regionName", "Region not found");
Dynamic References
CloudFormation supports dynamically resolving values
for SSM parameters (including secure strings) and Secrets Manager. Encoding such
references is done using the CfnDynamicReference
class:
new CfnDynamicReference(CfnDynamicReferenceService.SECRETS_MANAGER, "secret-id:secret-string:json-key:version-stage:version-id");
Template Options & Transform
CloudFormation templates support a number of options, including which Macros or
Transforms to use when deploying the stack. Those can be
configured using the stack.templateOptions
property:
Stack stack = new Stack(app, "StackName"); stack.getTemplateOptions().getDescription() = "This will appear in the AWS console"; stack.getTemplateOptions().getTransforms() = List.of("AWS::Serverless-2016-10-31"); stack.getTemplateOptions().getMetadata() = Map.of( "metadataKey", "MetadataValue");
Emitting Raw Resources
The CfnResource
class allows emitting arbitrary entries in the
Resources section of the CloudFormation template.
CfnResource.Builder.create(this, "ResourceId") .type("AWS::S3::Bucket") .properties(Map.of( "BucketName", "amzn-s3-demo-bucket")) .build();
As for any other resource, the logical ID in the CloudFormation template will be generated by the AWS CDK, but the type and properties will be copied verbatim in the synthesized template.
Including raw CloudFormation template fragments
When migrating a CloudFormation stack to the AWS CDK, it can be useful to
include fragments of an existing template verbatim in the synthesized template.
This can be achieved using the CfnInclude
class.
new CfnInclude(this, "ID", new CfnIncludeProps() .template(Map.of( "Resources", Map.of( "Bucket", Map.of( "Type", "AWS::S3::Bucket", "Properties", Map.of( "BucketName", "amzn-s3-demo-bucket"))))) );
Termination Protection
You can prevent a stack from being accidentally deleted by enabling termination
protection on the stack. If a user attempts to delete a stack with termination
protection enabled, the deletion fails and the stack--including its status--remains
unchanged. Enabling or disabling termination protection on a stack sets it for any
nested stacks belonging to that stack as well. You can enable termination protection
on a stack by setting the terminationProtection
prop to true
.
Stack stack = Stack.Builder.create(app, "StackName") .terminationProtection(true) .build();
You can also set termination protection with the setter after you've instantiated the stack.
Stack stack = Stack.Builder.create(app, "StackName").build(); stack.getTerminationProtection() = true;
By default, termination protection is disabled.
Description
You can add a description of the stack in the same way as StackProps
.
Stack stack = Stack.Builder.create(app, "StackName") .description("This is a description.") .build();
CfnJson
CfnJson
allows you to postpone the resolution of a JSON blob from
deployment-time. This is useful in cases where the CloudFormation JSON template
cannot express a certain value.
A common example is to use CfnJson
in order to render a JSON map which needs
to use intrinsic functions in keys. Since JSON map keys must be strings, it is
impossible to use intrinsics in keys and CfnJson
can help.
The following example defines an IAM role which can only be assumed by principals that are tagged with a specific tag.
CfnParameter tagParam = new CfnParameter(this, "TagName"); CfnJson stringEquals = CfnJson.Builder.create(this, "ConditionJson") .value(Map.of( String.format("aws:PrincipalTag/%s", tagParam.getValueAsString()), true)) .build(); PrincipalBase principal = new AccountRootPrincipal().withConditions(Map.of( "StringEquals", stringEquals)); Role.Builder.create(this, "MyRole").assumedBy(principal).build();
Explanation: since in this example we pass the tag name through a parameter, it
can only be resolved during deployment. The resolved value can be represented in
the template through a { "Ref": "TagName" }
. However, since we want to use
this value inside a aws:PrincipalTag/TAG-NAME
IAM operator, we need it in the key of a StringEquals
condition. JSON keys
must be strings, so to circumvent this limitation, we use CfnJson
to "delay" the rendition of this template section to deploy-time. This means
that the value of StringEquals
in the template will be { "Fn::GetAtt": [ "ConditionJson", "Value" ] }
, and will only "expand" to the operator we synthesized during deployment.
Stack Resource Limit
When deploying to AWS CloudFormation, it needs to keep in check the amount of resources being added inside a Stack. Currently it's possible to check the limits in the AWS CloudFormation quotas page.
It's possible to synthesize the project with more Resources than the allowed (or even reduce the number of Resources).
Set the context key @aws-cdk/core:stackResourceLimit
with the proper value, being 0 for disable the limit of resources.
Template Indentation
The AWS CloudFormation templates generated by CDK include indentation by default. Indentation makes the templates more readable, but also increases their size, and CloudFormation templates cannot exceed 1MB.
It's possible to reduce the size of your templates by suppressing indentation.
To do this for all templates, set the context key @aws-cdk/core:suppressTemplateIndentation
to true
.
To do this for a specific stack, add a suppressTemplateIndentation: true
property to the
stack's StackProps
parameter. You can also set this property to false
to override
the context key setting.
App Context
Context values are key-value pairs that can be associated with an app, stack, or construct. One common use case for context is to use it for enabling/disabling feature flags. There are several places where context can be specified. They are listed below in the order they are evaluated (items at the top take precedence over those below).
- The
node.setContext()
method - The
postCliContext
prop when you create anApp
- The CLI via the
--context
CLI argument - The
cdk.json
file via thecontext
key: - The
cdk.context.json
file: - The
~/.cdk.json
file via thecontext
key: - The
context
prop when you create anApp
Examples of setting context
App.Builder.create() .context(Map.of( "@aws-cdk/core:newStyleStackSynthesis", true)) .build();
App app = new App(); app.node.setContext("@aws-cdk/core:newStyleStackSynthesis", true);
App.Builder.create() .postCliContext(Map.of( "@aws-cdk/core:newStyleStackSynthesis", true)) .build();
cdk synth --context @aws-cdk/core:newStyleStackSynthesis=true
cdk.json
{ "context": { "@aws-cdk/core:newStyleStackSynthesis": true } }
cdk.context.json
{ "@aws-cdk/core:newStyleStackSynthesis": true }
~/.cdk.json
{ "context": { "@aws-cdk/core:newStyleStackSynthesis": true } }
IAM Permissions Boundary
It is possible to apply an IAM permissions boundary
to all roles within a specific construct scope. The most common use case would
be to apply a permissions boundary at the Stage
level.
Stage prodStage = Stage.Builder.create(app, "ProdStage") .permissionsBoundary(PermissionsBoundary.fromName("cdk-${Qualifier}-PermissionsBoundary")) .build();
Any IAM Roles or Users created within this Stage will have the default permissions boundary attached.
For more details see the Permissions Boundary section in the IAM guide.
Policy Validation
If you or your organization use (or would like to use) any policy validation tool, such as CloudFormation Guard or OPA, to define constraints on your CloudFormation template, you can incorporate them into the CDK application. By using the appropriate plugin, you can make the CDK application check the generated CloudFormation templates against your policies immediately after synthesis. If there are any violations, the synthesis will fail and a report will be printed to the console or to a file (see below).
Note This feature is considered experimental, and both the plugin API and the format of the validation report are subject to change in the future.
For application developers
To use one or more validation plugins in your application, use the
policyValidationBeta1
property of Stage
:
// globally for the entire app (an app is a stage) App app = App.Builder.create() .policyValidationBeta1(List.of( // These hypothetical classes implement IPolicyValidationPluginBeta1: new ThirdPartyPluginX(), new ThirdPartyPluginY())) .build(); // only apply to a particular stage Stage prodStage = Stage.Builder.create(app, "ProdStage") .policyValidationBeta1(List.of( new ThirdPartyPluginX())) .build();
Immediately after synthesis, all plugins registered this way will be invoked to
validate all the templates generated in the scope you defined. In particular, if
you register the templates in the App
object, all templates will be subject to
validation.
Warning Other than modifying the cloud assembly, plugins can do anything that your CDK application can. They can read data from the filesystem, access the network etc. It's your responsibility as the consumer of a plugin to verify that it is secure to use.
By default, the report will be printed in a human readable format. If you want a
report in JSON format, enable it using the @aws-cdk/core:validationReportJson
context passing it directly to the application:
App app = App.Builder.create() .context(Map.of("@aws-cdk/core:validationReportJson", true)) .build();
Alternatively, you can set this context key-value pair using the cdk.json
or
cdk.context.json
files in your project directory (see
Runtime context).
If you choose the JSON format, the CDK will print the policy validation report
to a file called policy-validation-report.json
in the cloud assembly
directory. For the default, human-readable format, the report will be printed to
the standard output.
For plugin authors
The communication protocol between the CDK core module and your policy tool is
defined by the IPolicyValidationPluginBeta1
interface. To create a new plugin you must
write a class that implements this interface. There are two things you need to
implement: the plugin name (by overriding the name
property), and the
validate()
method.
The framework will call validate()
, passing an IPolicyValidationContextBeta1
object.
The location of the templates to be validated is given by templatePaths
. The
plugin should return an instance of PolicyValidationPluginReportBeta1
. This object
represents the report that the user wil receive at the end of the synthesis.
public class MyPlugin implements IPolicyValidationPluginBeta1 { public final Object name; public PolicyValidationPluginReportBeta1 validate(IPolicyValidationContextBeta1 context) { // First read the templates using context.templatePaths... // ...then perform the validation, and then compose and return the report. // Using hard-coded values here for better clarity: return PolicyValidationPluginReportBeta1.builder() .success(false) .violations(List.of(PolicyViolationBeta1.builder() .ruleName("CKV_AWS_117") .description("Ensure that AWS Lambda function is configured inside a VPC") .fix("https://docs.bridgecrew.io/docs/ensure-that-aws-lambda-function-is-configured-inside-a-vpc-1") .violatingResources(List.of(PolicyViolatingResourceBeta1.builder() .resourceLogicalId("MyFunction3BAA72D1") .templatePath("/home/johndoe/myapp/cdk.out/MyService.template.json") .locations(List.of("Properties/VpcConfig")) .build())) .build())) .build(); } }
In addition to the name, plugins may optionally report their version (version
property ) and a list of IDs of the rules they are going to evaluate (ruleIds
property).
Note that plugins are not allowed to modify anything in the cloud assembly. Any attempt to do so will result in synthesis failure.
If your plugin depends on an external tool, keep in mind that some developers may
not have that tool installed in their workstations yet. To minimize friction, we
highly recommend that you provide some installation script along with your
plugin package, to automate the whole process. Better yet, run that script as
part of the installation of your package. With npm
, for example, you can run
add it to the postinstall
script in the package.json
file.
Annotations
Construct authors can add annotations to constructs to report at three different
levels: ERROR
, WARN
, INFO
.
Typically warnings are added for things that are important for the user to be aware of, but will not cause deployment errors in all cases. Some common scenarios are (non-exhaustive list):
- Warn when the user needs to take a manual action, e.g. IAM policy should be added to an referenced resource.
- Warn if the user configuration might not follow best practices (but is still valid)
- Warn if the user is using a deprecated API
Acknowledging Warnings
If you would like to run with --strict
mode enabled (warnings will throw
errors) it is possible to acknowledge
warnings to make the warning go away.
For example, if > 10 IAM managed policies are added to an IAM Group, a warning will be created:
IAM:Group:MaxPoliciesExceeded: You added 11 to IAM Group my-group. The maximum number of managed policies attached to an IAM group is 10.
If you have requested a quota increase
you may have the ability to add > 10 managed policies which means that this
warning does not apply to you. You can acknowledge this by acknowledging
the
warning by the id
.
Annotations.of(this).acknowledgeWarning("IAM:Group:MaxPoliciesExceeded", "Account has quota increased to 20");
-
ClassDescriptionIncludes API for attaching annotations such as warning messages to constructs.A construct which represents an entire CDK app.A fluent builder for
App
.Initialization props for apps.A builder forAppProps
An implementation forAppProps
Example:A builder forArnComponents
An implementation forArnComponents
An enum representing the various ARN formats that different services use.Aspects can be applied to CDK tree scopes and can operate on the tree before synthesis.The type of asset hash.Build an asset manifest from assets added to a stack.The destination for a docker image asset, when it is given to the AssetManifestBuilder.A builder forAssetManifestDockerImageDestination
An implementation forAssetManifestDockerImageDestination
The destination for a file asset, when it is given to the AssetManifestBuilder.A builder forAssetManifestFileDestination
An implementation forAssetManifestFileDestination
Asset hash options.A builder forAssetOptions
An implementation forAssetOptions
Stages a file or directory from a location on the file system into a staging directory.A fluent builder forAssetStaging
.Initialization properties forAssetStaging
.A builder forAssetStagingProps
An implementation forAssetStagingProps
Accessor for pseudo parameters.Synthesizer that reuses bootstrap roles from a different region.A fluent builder forBootstraplessSynthesizer
.Construction properties ofBootstraplessSynthesizer
.A builder forBootstraplessSynthesizerProps
An implementation forBootstraplessSynthesizerProps
The access mechanism used to make source files available to the bundling container and to return the bundling output back to the host.Bundling options.A builder forBundlingOptions
An implementation forBundlingOptions
The type of output that a bundling operation is producing.Specifies whether an Auto Scaling group and the instances it contains are replaced during an update.A builder forCfnAutoScalingReplacingUpdate
An implementation forCfnAutoScalingReplacingUpdate
To specify how AWS CloudFormation handles rolling updates for an Auto Scaling group, use the AutoScalingRollingUpdate policy.A builder forCfnAutoScalingRollingUpdate
An implementation forCfnAutoScalingRollingUpdate
With scheduled actions, the group size properties of an Auto Scaling group can change at any time.A builder forCfnAutoScalingScheduledAction
An implementation forCfnAutoScalingScheduledAction
Capabilities that affect whether CloudFormation is allowed to change IAM resources.Additional options for the blue/green deployment.A builder forCfnCodeDeployBlueGreenAdditionalOptions
An implementation forCfnCodeDeployBlueGreenAdditionalOptions
The application actually being deployed.A builder forCfnCodeDeployBlueGreenApplication
An implementation forCfnCodeDeployBlueGreenApplication
Type of theCfnCodeDeployBlueGreenApplication.target
property.A builder forCfnCodeDeployBlueGreenApplicationTarget
An implementation forCfnCodeDeployBlueGreenApplicationTarget
The attributes of the ECS Service being deployed.A builder forCfnCodeDeployBlueGreenEcsAttributes
An implementation forCfnCodeDeployBlueGreenEcsAttributes
A CloudFormation Hook for CodeDeploy blue-green ECS deployments.A fluent builder forCfnCodeDeployBlueGreenHook
.Construction properties ofCfnCodeDeployBlueGreenHook
.A builder forCfnCodeDeployBlueGreenHookProps
An implementation forCfnCodeDeployBlueGreenHookProps
Lifecycle events for blue-green deployments.A builder forCfnCodeDeployBlueGreenLifecycleEventHooks
An implementation forCfnCodeDeployBlueGreenLifecycleEventHooks
To perform an AWS CodeDeploy deployment when the version changes on an AWS::Lambda::Alias resource, use the CodeDeployLambdaAliasUpdate update policy.A builder forCfnCodeDeployLambdaAliasUpdate
An implementation forCfnCodeDeployLambdaAliasUpdate
Represents a CloudFormation condition, for resources which must be conditionally created and the determination must be made at deploy time.A fluent builder forCfnCondition
.Example:A builder forCfnConditionProps
An implementation forCfnConditionProps
Associate the CreationPolicy attribute with a resource to prevent its status from reaching create complete until AWS CloudFormation receives a specified number of success signals or the timeout period is exceeded.A builder forCfnCreationPolicy
An implementation forCfnCreationPolicy
In a CloudFormation template, you use theAWS::CloudFormation::CustomResource
orCustom:: *String*
resource type to specify custom resources.A fluent builder forCfnCustomResource
.Properties for defining aCfnCustomResource
.A builder forCfnCustomResourceProps
An implementation forCfnCustomResourceProps
With the DeletionPolicy attribute you can preserve or (in some cases) backup a resource when its stack is deleted.References a dynamically retrieved value.Properties for a Dynamic Reference.A builder forCfnDynamicReferenceProps
An implementation forCfnDynamicReferenceProps
The service to retrieve the dynamic reference from.An element of a CloudFormation stack.This is a CloudFormation resource for activating the first-party AWS::Hooks::GuardHook.A fluent builder forCfnGuardHook
.Example:A builder forCfnGuardHook.OptionsProperty
An implementation forCfnGuardHook.OptionsProperty
S3 Source Location for the Guard files.A builder forCfnGuardHook.S3LocationProperty
An implementation forCfnGuardHook.S3LocationProperty
Filters to allow hooks to target specific stack attributes.A builder forCfnGuardHook.StackFiltersProperty
An implementation forCfnGuardHook.StackFiltersProperty
List of stack names as filters.A builder forCfnGuardHook.StackNamesProperty
An implementation forCfnGuardHook.StackNamesProperty
List of stack roles that are performing the stack operations.A builder forCfnGuardHook.StackRolesProperty
An implementation forCfnGuardHook.StackRolesProperty
Example:A builder forCfnGuardHook.TargetFiltersProperty
An implementation forCfnGuardHook.TargetFiltersProperty
Properties for defining aCfnGuardHook
.A builder forCfnGuardHookProps
An implementation forCfnGuardHookProps
Represents a CloudFormation resource.A fluent builder forCfnHook
.TheHookDefaultVersion
resource specifies the default version of the hook.A fluent builder forCfnHookDefaultVersion
.Properties for defining aCfnHookDefaultVersion
.A builder forCfnHookDefaultVersionProps
An implementation forCfnHookDefaultVersionProps
Construction properties ofCfnHook
.A builder forCfnHookProps
An implementation forCfnHookProps
TheHookTypeConfig
resource specifies the configuration of a hook.A fluent builder forCfnHookTypeConfig
.Properties for defining aCfnHookTypeConfig
.A builder forCfnHookTypeConfigProps
An implementation forCfnHookTypeConfigProps
TheHookVersion
resource publishes new or first hook version to the AWS CloudFormation registry.A fluent builder forCfnHookVersion
.TheLoggingConfig
property type specifies logging configuration information for an extension.A builder forCfnHookVersion.LoggingConfigProperty
An implementation forCfnHookVersion.LoggingConfigProperty
Properties for defining aCfnHookVersion
.A builder forCfnHookVersionProps
An implementation forCfnHookVersionProps
Captures a synthesis-time JSON object a CloudFormation reference which resolves during deployment to the resolved values of the JSON object.A fluent builder forCfnJson
.Example:A builder forCfnJsonProps
An implementation forCfnJsonProps
This is a CloudFormation resource for the first-party AWS::Hooks::LambdaHook.A fluent builder forCfnLambdaHook
.Filters to allow hooks to target specific stack attributes.A builder forCfnLambdaHook.StackFiltersProperty
An implementation forCfnLambdaHook.StackFiltersProperty
List of stack names as filters.A builder forCfnLambdaHook.StackNamesProperty
An implementation forCfnLambdaHook.StackNamesProperty
List of stack roles that are performing the stack operations.A builder forCfnLambdaHook.StackRolesProperty
An implementation forCfnLambdaHook.StackRolesProperty
Example:A builder forCfnLambdaHook.TargetFiltersProperty
An implementation forCfnLambdaHook.TargetFiltersProperty
Properties for defining aCfnLambdaHook
.A builder forCfnLambdaHookProps
An implementation forCfnLambdaHookProps
TheAWS::CloudFormation::Macro
resource is a CloudFormation resource type that creates a CloudFormation macro to perform custom processing on CloudFormation templates.A fluent builder forCfnMacro
.Properties for defining aCfnMacro
.A builder forCfnMacroProps
An implementation forCfnMacroProps
Represents a CloudFormation mapping.A fluent builder forCfnMapping
.Example:A builder forCfnMappingProps
An implementation forCfnMappingProps
Specifies the default version of a module.A fluent builder forCfnModuleDefaultVersion
.Properties for defining aCfnModuleDefaultVersion
.A builder forCfnModuleDefaultVersionProps
An implementation forCfnModuleDefaultVersionProps
Registers the specified version of the module with the CloudFormation service.A fluent builder forCfnModuleVersion
.Properties for defining aCfnModuleVersion
.A builder forCfnModuleVersionProps
An implementation forCfnModuleVersionProps
Example:A fluent builder forCfnOutput
.Example:A builder forCfnOutputProps
An implementation forCfnOutputProps
A CloudFormation parameter.A fluent builder forCfnParameter
.Example:A builder forCfnParameterProps
An implementation forCfnParameterProps
Tests and publishes a registered extension as a public, third-party extension.A fluent builder forCfnPublicTypeVersion
.Properties for defining aCfnPublicTypeVersion
.A builder forCfnPublicTypeVersionProps
An implementation forCfnPublicTypeVersionProps
Registers your account as a publisher of public extensions in the CloudFormation registry.A fluent builder forCfnPublisher
.Properties for defining aCfnPublisher
.A builder forCfnPublisherProps
An implementation forCfnPublisherProps
Base class for referencable CloudFormation constructs which are not Resources.Represents a CloudFormation resource.A fluent builder forCfnResource
.For an Auto Scaling group replacement update, specifies how many instances must signal success for the update to succeed.A builder forCfnResourceAutoScalingCreationPolicy
An implementation forCfnResourceAutoScalingCreationPolicy
Specifies the default version of a resource.A fluent builder forCfnResourceDefaultVersion
.Properties for defining aCfnResourceDefaultVersion
.A builder forCfnResourceDefaultVersionProps
An implementation forCfnResourceDefaultVersionProps
Example:A builder forCfnResourceProps
An implementation forCfnResourceProps
When AWS CloudFormation creates the associated resource, configures the number of required success signals and the length of time that AWS CloudFormation waits for those signals.A builder forCfnResourceSignal
An implementation forCfnResourceSignal
Registers a resource version with the CloudFormation service.A fluent builder forCfnResourceVersion
.Logging configuration information for a resource.A builder forCfnResourceVersion.LoggingConfigProperty
An implementation forCfnResourceVersion.LoggingConfigProperty
Properties for defining aCfnResourceVersion
.A builder forCfnResourceVersionProps
An implementation forCfnResourceVersionProps
The Rules that define template constraints in an AWS Service Catalog portfolio describe when end users can use the template and which values they can specify for parameters that are declared in the AWS CloudFormation template used to create the product they are attempting to use.A fluent builder forCfnRule
.A rule assertion.A builder forCfnRuleAssertion
An implementation forCfnRuleAssertion
A rule can include a RuleCondition property and must include an Assertions property.A builder forCfnRuleProps
An implementation forCfnRuleProps
TheAWS::CloudFormation::Stack
resource nests a stack as a resource in a top-level template.A fluent builder forCfnStack
.The Output data type.A builder forCfnStack.OutputProperty
An implementation forCfnStack.OutputProperty
Properties for defining aCfnStack
.A builder forCfnStackProps
An implementation forCfnStackProps
TheAWS::CloudFormation::StackSet
enables you to provision stacks into AWS accounts and across Regions by using a single CloudFormation template.[Service-managed
permissions] Describes whether StackSets automatically deploys to AWS Organizations accounts that are added to a target organizational unit (OU).A builder forCfnStackSet.AutoDeploymentProperty
An implementation forCfnStackSet.AutoDeploymentProperty
A fluent builder forCfnStackSet
.The AWS OrganizationalUnitIds or Accounts for which to create stack instances in the specified Regions.A builder forCfnStackSet.DeploymentTargetsProperty
An implementation forCfnStackSet.DeploymentTargetsProperty
Describes whether StackSets performs non-conflicting operations concurrently and queues conflicting operations.A builder forCfnStackSet.ManagedExecutionProperty
An implementation forCfnStackSet.ManagedExecutionProperty
The user-specified preferences for how AWS CloudFormation performs a stack set operation.A builder forCfnStackSet.OperationPreferencesProperty
An implementation forCfnStackSet.OperationPreferencesProperty
The Parameter data type.A builder forCfnStackSet.ParameterProperty
An implementation forCfnStackSet.ParameterProperty
Stack instances in some specific accounts and Regions.A builder forCfnStackSet.StackInstancesProperty
An implementation forCfnStackSet.StackInstancesProperty
Properties for defining aCfnStackSet
.A builder forCfnStackSetProps
An implementation forCfnStackSetProps
Example:A builder forCfnTag
An implementation forCfnTag
A traffic route, representing where the traffic is being directed to.A builder forCfnTrafficRoute
An implementation forCfnTrafficRoute
Type of theCfnCodeDeployBlueGreenEcsAttributes.trafficRouting
property.A builder forCfnTrafficRouting
An implementation forCfnTrafficRouting
Traffic routing configuration settings.A builder forCfnTrafficRoutingConfig
An implementation forCfnTrafficRoutingConfig
The traffic routing configuration ifCfnTrafficRoutingConfig.type
isCfnTrafficRoutingType.TIME_BASED_CANARY
.A builder forCfnTrafficRoutingTimeBasedCanary
An implementation forCfnTrafficRoutingTimeBasedCanary
The traffic routing configuration ifCfnTrafficRoutingConfig.type
isCfnTrafficRoutingType.TIME_BASED_LINEAR
.A builder forCfnTrafficRoutingTimeBasedLinear
An implementation forCfnTrafficRoutingTimeBasedLinear
The possible types of traffic shifting for the blue-green deployment configuration.Activates a public third-party extension, making it available for use in stack templates.A fluent builder forCfnTypeActivation
.Contains logging configuration information for an extension.A builder forCfnTypeActivation.LoggingConfigProperty
An implementation forCfnTypeActivation.LoggingConfigProperty
Properties for defining aCfnTypeActivation
.A builder forCfnTypeActivationProps
An implementation forCfnTypeActivationProps
Use the UpdatePolicy attribute to specify how AWS CloudFormation handles updates to the AWS::AutoScaling::AutoScalingGroup resource.A builder forCfnUpdatePolicy
An implementation forCfnUpdatePolicy
A fluent builder forCfnWaitCondition
.A fluent builder forCfnWaitConditionHandle
.Properties for defining aCfnWaitConditionHandle
.A builder forCfnWaitConditionHandleProps
An implementation forCfnWaitConditionHandleProps
Properties for defining aCfnWaitCondition
.A builder forCfnWaitConditionProps
An implementation forCfnWaitConditionProps
A synthesizer that uses conventional asset locations, but not conventional deployment roles.A fluent builder forCliCredentialsStackSynthesizer
.Properties for the CliCredentialsStackSynthesizer.A builder forCliCredentialsStackSynthesizerProps
An implementation forCliCredentialsStackSynthesizerProps
Base class for the model side of context providers.Options applied when copying directories.A builder forCopyOptions
An implementation forCopyOptions
Instantiation of a custom resource, whose implementation is provided a Provider.A fluent builder forCustomResource
.Properties to provide a Lambda-backed custom resource.A builder forCustomResourceProps
An implementation forCustomResourceProps
An AWS-Lambda backed custom resource provider, for CDK Construct Library constructs.Base class for creating a custom resource provider.Initialization properties forCustomResourceProviderBase
.A builder forCustomResourceProviderBaseProps
An implementation forCustomResourceProviderBaseProps
Initialization options for custom resource providers.A builder forCustomResourceProviderOptions
An implementation forCustomResourceProviderOptions
Initialization properties forCustomResourceProvider
.A builder forCustomResourceProviderProps
An implementation forCustomResourceProviderProps
The lambda runtime to use for the resource provider.Uses conventionally named roles and asset storage locations.A fluent builder forDefaultStackSynthesizer
.Configuration properties for DefaultStackSynthesizer.A builder forDefaultStackSynthesizerProps
An implementation forDefaultStackSynthesizerProps
Default resolver implementation.Docker build options.A builder forDockerBuildOptions
An implementation forDockerBuildOptions
Methods to build Docker CLI arguments for builds using secrets.Options for configuring the Docker cache backend.A builder forDockerCacheOption
An implementation forDockerCacheOption
Ignores file paths based on the.dockerignore specification
.A Docker image.The location of the published docker image.A builder forDockerImageAssetLocation
An implementation forDockerImageAssetLocation
Example:A builder forDockerImageAssetSource
An implementation forDockerImageAssetSource
Docker run options.A builder forDockerRunOptions
An implementation forDockerRunOptions
A Docker volume.A builder forDockerVolume
An implementation forDockerVolume
Supported Docker volume consistency types.Represents a length of time.Properties to string encodings.A builder forEncodingOptions
An implementation forEncodingOptions
The deployment environment for a stack.A builder forEnvironment
An implementation forEnvironment
Represents a date of expiration.Options for thestack.exportValue()
method.A builder forExportValueOptions
An implementation forExportValueOptions
Features that are implemented behind a flag in order to preserve backwards compatibility for existing apps.The location of the published file asset.A builder forFileAssetLocation
An implementation forFileAssetLocation
Packaging modes for file assets.Represents the source for a file asset.A builder forFileAssetSource
An implementation forFileAssetSource
Options applied when copying directories into the staging location.A builder forFileCopyOptions
An implementation forFileCopyOptions
Options related to calculating source hash.A builder forFileFingerprintOptions
An implementation forFileFingerprintOptions
File system utilities.Options related to calculating source hash.A builder forFingerprintOptions
An implementation forFingerprintOptions
CloudFormation intrinsic functions.Example:A builder forGetContextKeyOptions
An implementation forGetContextKeyOptions
Example:A builder forGetContextKeyResult
An implementation forGetContextKeyResult
Example:A builder forGetContextValueOptions
An implementation forGetContextValueOptions
Example:A builder forGetContextValueResult
An implementation forGetContextValueResult
Ignores file paths based on the.gitignore specification
.Ignores file paths based on simple glob patterns.Interface for lazy untyped value producers.Internal default implementation forIAnyProducer
.A proxy class which represents a concrete javascript instance of this type.Represents an Aspect.Internal default implementation forIAspect
.A proxy class which represents a concrete javascript instance of this type.Common interface for all assets.Internal default implementation forIAsset
.A proxy class which represents a concrete javascript instance of this type.A Stack Synthesizer, obtained fromIReusableStackSynthesizer.
.Internal default implementation forIBoundStackSynthesizer
.A proxy class which represents a concrete javascript instance of this type.Represents a CloudFormation element that can be used within a Condition.Internal default implementation forICfnConditionExpression
.A proxy class which represents a concrete javascript instance of this type.Internal default implementation forICfnResourceOptions
.A proxy class which represents a concrete javascript instance of this type.Interface to specify certain functions as Service Catalog rule-specific.Internal default implementation forICfnRuleConditionExpression
.A proxy class which represents a concrete javascript instance of this type.Function used to concatenate symbols in the target document language.Internal default implementation forIFragmentConcatenator
.A proxy class which represents a concrete javascript instance of this type.Determines the ignore behavior to use.Represents file path ignoring behavior.Interface for examining a construct and exposing metadata.Internal default implementation forIInspectable
.A proxy class which represents a concrete javascript instance of this type.Interface for lazy list producers.Internal default implementation forIListProducer
.A proxy class which represents a concrete javascript instance of this type.Local bundling.Internal default implementation forILocalBundling
.A proxy class which represents a concrete javascript instance of this type.Token subclass that represents values intrinsic to the target document language.A fluent builder forIntrinsic
.Customization properties for an Intrinsic token.A builder forIntrinsicProps
An implementation forIntrinsicProps
Interface for lazy number producers.Internal default implementation forINumberProducer
.A proxy class which represents a concrete javascript instance of this type.Context available to the validation plugin.Internal default implementation forIPolicyValidationContextBeta1
.A proxy class which represents a concrete javascript instance of this type.Represents a validation plugin that will be executed during synthesis.Internal default implementation forIPolicyValidationPluginBeta1
.A proxy class which represents a concrete javascript instance of this type.A Token that can post-process the complete resolved value, after resolve() has recursed over it.Internal default implementation forIPostProcessor
.A proxy class which represents a concrete javascript instance of this type.Interface for values that can be resolvable later.Internal default implementation forIResolvable
.A proxy class which represents a concrete javascript instance of this type.Current resolution context for tokens.Internal default implementation forIResolveContext
.A proxy class which represents a concrete javascript instance of this type.Interface for the Resource construct.Internal default implementation forIResource
.A proxy class which represents a concrete javascript instance of this type.Interface for Stack Synthesizers that can be used for more than one stack.Internal default implementation forIReusableStackSynthesizer
.A proxy class which represents a concrete javascript instance of this type.Interface for (stable) lazy untyped value producers.Internal default implementation forIStableAnyProducer
.A proxy class which represents a concrete javascript instance of this type.Interface for (stable) lazy list producers.Internal default implementation forIStableListProducer
.A proxy class which represents a concrete javascript instance of this type.Interface for (stable) lazy number producers.Internal default implementation forIStableNumberProducer
.A proxy class which represents a concrete javascript instance of this type.Interface for (stable) lazy string producers.Internal default implementation forIStableStringProducer
.A proxy class which represents a concrete javascript instance of this type.Encodes information how a certain Stack should be deployed.Internal default implementation forIStackSynthesizer
.A proxy class which represents a concrete javascript instance of this type.Interface for lazy string producers.Internal default implementation forIStringProducer
.A proxy class which represents a concrete javascript instance of this type.Represents a single session of synthesis.Internal default implementation forISynthesisSession
.A proxy class which represents a concrete javascript instance of this type.Interface to implement tags.Internal default implementation forITaggable
.A proxy class which represents a concrete javascript instance of this type.Modernized version of ITaggable.Internal default implementation forITaggableV2
.A proxy class which represents a concrete javascript instance of this type.CloudFormation template options for a stack.Internal default implementation forITemplateOptions
.A proxy class which represents a concrete javascript instance of this type.Interface to apply operation to tokens in a string.Internal default implementation forITokenMapper
.A proxy class which represents a concrete javascript instance of this type.How to resolve tokens.Internal default implementation forITokenResolver
.A proxy class which represents a concrete javascript instance of this type.An object which serializes to the JSONnull
literal, and which can safely be passed across languages whereundefined
andnull
are not different.Lazily produce a value.Options for creating lazy untyped tokens.A builder forLazyAnyValueOptions
An implementation forLazyAnyValueOptions
Options for creating a lazy list token.A builder forLazyListValueOptions
An implementation forLazyListValueOptions
Options for creating a lazy string token.A builder forLazyStringValueOptions
An implementation forLazyStringValueOptions
Use the CDK classic way of referencing assets.Functions for devising unique names for constructs.A CloudFormation nested stack.A fluent builder forNestedStack
.Initialization props for theNestedStack
construct.A builder forNestedStackProps
An implementation forNestedStackProps
Synthesizer for a nested stack.Apply a permissions boundary to all IAM Roles and Users within a specific scope.Options for binding a Permissions Boundary to a construct scope.A builder forPermissionsBoundaryBindOptions
An implementation forPermissionsBoundaryBindOptions
Includes special markers for automatic generation of physical names.The report emitted by the plugin after evaluation.A builder forPolicyValidationPluginReportBeta1
An implementation forPolicyValidationPluginReportBeta1
The final status of the validation report.Resource violating a specific rule.A builder forPolicyViolatingResourceBeta1
An implementation forPolicyViolatingResourceBeta1
Violation produced by the validation plugin.A builder forPolicyViolationBeta1
An implementation forPolicyViolationBeta1
An intrinsic Token that represents a reference to a construct.Possible values for a resource's Removal Policy.Example:A builder forRemovalPolicyOptions
An implementation forRemovalPolicyOptions
The RemoveTag Aspect will handle removing tags from this node and children.A fluent builder forRemoveTag
.Type hints for resolved values.Options that can be changed while doing a recursive resolve.A builder forResolveChangeContextOptions
An implementation forResolveChangeContextOptions
Options to the resolve() operation.A builder forResolveOptions
An implementation forResolveOptions
A construct which represents an AWS resource.Represents the environment a given resource lives in.A builder forResourceEnvironment
An implementation forResourceEnvironment
Construction properties forResource
.A builder forResourceProps
An implementation forResourceProps
Options for the 'reverse()' operation.A builder forReverseOptions
An implementation forReverseOptions
Options for specifying a role.A builder forRoleOptions
An implementation forRoleOptions
Accessor for scoped pseudo parameters.Options for referencing a secret value from Secrets Manager.A builder forSecretsManagerSecretOptions
An implementation forSecretsManagerSecretOptions
Work with secret values in the CDK.A fluent builder forSecretValue
.Represents the amount of digital storage.Options for how to convert time to a different unit.A builder forSizeConversionOptions
An implementation forSizeConversionOptions
Rounding behaviour when converting between units ofSize
.A root construct which represents a single CloudFormation stack.A fluent builder forStack
.Example:A builder forStackProps
An implementation forStackProps
Base class for implementing an IStackSynthesizer.An abstract application modeling unit consisting of Stacks that should be deployed together.A fluent builder forStage
.Initialization props for a stage.A builder forStageProps
An implementation forStageProps
Options for assembly synthesis.A builder forStageSynthesisOptions
An implementation forStageSynthesisOptions
Converts all fragments to strings and concats those.Determines how symlinks are followed.Stack artifact options.A builder forSynthesizeStackArtifactOptions
An implementation forSynthesizeStackArtifactOptions
The Tag Aspect will handle adding a tag to this node and cascading tags to children.A fluent builder forTag
.TagManager facilitates a common implementation of tagging for Constructs.A fluent builder forTagManager
.Options to configure TagManager behavior.A builder forTagManagerOptions
An implementation forTagManagerOptions
Properties for a tag.A builder forTagProps
An implementation forTagProps
Manages AWS tags for all resources within a construct scope.Example:Options for how to convert time to a different unit.A builder forTimeConversionOptions
An implementation forTimeConversionOptions
Canonical names of the IANA time zones, derived from the IANA Time Zone Database.Represents a special or lazily-evaluated value.An enum-like class that represents the result of comparing two Tokens.Less oft-needed functions to manipulate Tokens.Fragments of a concatenated string containing stringified Tokens.Inspector that maintains an attribute bag.Options for creating a unique resource name.A builder forUniqueResourceNameOptions
An implementation forUniqueResourceNameOptions
Representation of validation results.A collection of validation results.