Amazon Textract examples using AWS CLI - AWS Command Line Interface

Amazon Textract examples using AWS CLI

The following code examples show you how to perform actions and implement common scenarios by using the AWS Command Line Interface with Amazon Textract.

Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.

Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.

Topics

Actions

The following code example shows how to use analyze-document.

AWS CLI

To analyze text in a document

The following analyze-document example shows how to analyze text in a document.

Linux/macOS:

aws textract analyze-document \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]'

Windows:

aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region region-name

Output:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }

For more information, see Analyzing Document Text with Amazon Textract in the Amazon Textract Developers Guide

The following code example shows how to use detect-document-text.

AWS CLI

To detect text in a document

The following detect-document-text The following example shows how to detect text in a document.

Linux/macOS:

aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'

Windows:

aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name

Output:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }

For more information, see Detecting Document Text with Amazon Textract in the Amazon Textract Developers Guide

The following code example shows how to use get-document-analysis.

AWS CLI

To get the results of asynchronous text analysis of a multi-page document

The following get-document-analysis example shows how to get the results of asynchronous text analysis of a multi-page document.

aws textract get-document-analysis \ --job-id df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b \ --max-results 1000

Output:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

For more information, see Detecting and Analyzing Text in Multi-Page Documents in the Amazon Textract Developers Guide

The following code example shows how to use get-document-text-detection.

AWS CLI

To get the results of asynchronous text detection in a multi-page document

The following get-document-text-detection example shows how to get the results of asynchronous text detection in a multi-page document.

aws textract get-document-text-detection \ --job-id 57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9 \ --max-results 1000

Output

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

For more information, see Detecting and Analyzing Text in Multi-Page Documents in the Amazon Textract Developers Guide

The following code example shows how to use start-document-analysis.

AWS CLI

To start analyzing text in a multi-page document

The following start-document-analysis example shows how to start asynchronous analysis of text in a multi-page document.

Linux/macOS:

aws textract start-document-analysis \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Windows:

aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Output:

{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }

For more information, see Detecting and Analyzing Text in Multi-Page Documents in the Amazon Textract Developers Guide

The following code example shows how to use start-document-text-detection.

AWS CLI

To start detecting text in a multi-page document

The following start-document-text-detection example shows how to start asynchronous detection of text in a multi-page document.

Linux/macOS:

aws textract start-document-text-detection \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleARN"

Windows:

aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Output:

{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }

For more information, see Detecting and Analyzing Text in Multi-Page Documents in the Amazon Textract Developers Guide