Operational Best Practices for AWS Well-Architected Framework Reliability Pillar
Conformance packs provide a general-purpose compliance framework designed to enable you to create security, operational or cost-optimization governance checks using managed or custom AWS Config rules and AWS Config remediation actions. Conformance Packs, as sample templates, are not designed to fully ensure compliance with a specific governance or compliance standard. You are responsible for making your own assessment of whether your use of the Services meets applicable legal and regulatory requirements.
The following provides a sample mapping between Amazon Web Services’ Well-Architected Framework Reliability Pillar and AWS managed Config rules. Each Config rule applies to a specific AWS resource, and relates to one or more of the pillar’s design principles. A Well-Architected Framework category can be related to multiple Config rules. Refer to the table below for more detail and guidance related to these mappings.
Control ID | Control Description | AWS Config Rule | Guidance |
---|---|---|---|
REL-1 | How do you manage service quotas and constraints? For cloud-based workload architectures, there are service quotas (which are also referred to as service limits). These quotas exist to prevent accidentally provisioning more resources than you need and to limit request rates on API operations so as to protect services from abuse. There are also resource constraints, for example, the rate that you can push bits down a fiber-optic cable, or the amount of storage on a physical disk. | Enable this rule to ensure that provisioned throughput capacity is checked on your Amazon DynamoDB tables. This is the amount of read/write activity that each table can support. DynamoDB uses this information to reserve sufficient system resources to meet your throughput requirements. This rule generates an alert when the throughput approaches the maximum limit for a customer's account. This rule allows you to optionally set accountRCUThresholdPercentage (Config Default: 80) and accountWCUThresholdPercentage (Config Default: 80) parameters. The actual values should reflect your organization's policies. | |
REL-1 | How do you manage service quotas and constraints? For cloud-based workload architectures, there are service quotas (which are also referred to as service limits). These quotas exist to prevent accidentally provisioning more resources than you need and to limit request rates on API operations so as to protect services from abuse. There are also resource constraints, for example, the rate that you can push bits down a fiber-optic cable, or the amount of storage on a physical disk. | This rule ensures that a Lambda function's concurrency high and low limits are established. This can assist in baselining the number of requests that your function is serving at any given time. | |
REL-1 | How do you manage service quotas and constraints? For cloud-based workload architectures, there are service quotas (which are also referred to as service limits). These quotas exist to prevent accidentally provisioning more resources than you need and to limit request rates on API operations so as to protect services from abuse. There are also resource constraints, for example, the rate that you can push bits down a fiber-optic cable, or the amount of storage on a physical disk. | Limiting the maximum memory available to your Amazon Elastic Container Service (ECS) containers ensures that your resource usage cannot be abused in the event of malicious access to your containers. | |
REL-2 | How do you plan your network topology? Workloads often exist in multiple environments. These include multiple cloud environments (both publicly accessible and private) and possibly your existing data center infrastructure. Plans must include network considerations such as intra- and inter-system connectivity, public IP address management, private IP address management, and domain name resolution. | Redundant Site-to-Site VPN tunnels can be implemented to achieve resilience requirements. It uses two tunnels to help ensure connectivity in case one of the Site-to-Site VPN connections becomes unavailable. To protect against a loss of connectivity, in case your customer gateway becomes unavailable, you can set up a second Site-to-Site VPN connection to your Amazon Virtual Private Cloud (Amazon VPC) and virtual private gateway by using a second customer gateway. | |
REL-2 | How do you plan your network topology? Workloads often exist in multiple environments. These include multiple cloud environments (both publicly accessible and private) and possibly your existing data center infrastructure. Plans must include network considerations such as intra- and inter-system connectivity, public IP address management, private IP address management, and domain name resolution. | Enhanced VPC routing forces all COPY and UNLOAD traffic between the cluster and data repositories to go through your Amazon VPC. You can then use VPC features such as security groups and network access control lists to secure network traffic. You can also use VPC flow logs to monitor network traffic. | |
REL-2 | How do you plan your network topology? Workloads often exist in multiple environments. These include multiple cloud environments (both publicly accessible and private) and possibly your existing data center infrastructure. Plans must include network considerations such as intra- and inter-system connectivity, public IP address management, private IP address management, and domain name resolution. | Deploy Amazon Elastic Compute Cloud (Amazon EC2) instances within an Amazon Virtual Private Cloud (Amazon VPC) to enable secure communication between an instance and other services within the amazon VPC, without requiring an internet gateway, NAT device, or VPN connection. All traffic remains securely within the AWS Cloud. Because of their logical isolation, domains that reside within an Amazon VPC have an extra layer of security when compared to domains that use public endpoints. Assign Amazon EC2 instances to an Amazon VPC to properly manage access. | |
REL-5 | How do you Design Interactions in a Distributed System to Mitigate or Withstand Failures? Distributed systems rely on communications networks to interconnect components, such as servers or services. Your workload must operate reliably despite data loss or latency in these networks. Components of the distributed system must operate in a way that does not negatively impact other components or the workload. These best practices prevent failures and improve mean time between failures (MTBF). | Enable this rule to help notify the appropriate personnel through Amazon Simple Queue Service (Amazon SQS) or Amazon Simple Notification Service (Amazon SNS) when a function has failed. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | The Elastic Load Balancer (ELB) health checks for Amazon Elastic Compute Cloud (Amazon EC2) Auto Scaling groups support maintenance of adequate capacity and availability. The load balancer periodically sends pings, attempts connections, or sends requests to test Amazon EC2 instances health in an auto-scaling group. If an instance is not reporting back, traffic is sent to a new Amazon EC2 instance. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | AWS X-Ray collects data about requests that your application serves, and provides tools you can use to view, filter, and gain insights into that data to identify issues and opportunities for optimization. Ensure X-Ray is enables so you can see detailed information not only about the request and response, but also about calls that your application makes to downstream AWS resources, microservices, databases and HTTP web APIs. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | API Gateway logging displays detailed views of users who accessed the API and the way they accessed the API. This insight enables visibility of user activities. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | AWS Elastic Beanstalk enhanced health reporting enables a more rapid response to changes in the health of the underlying infrastructure. These changes could result in a lack of availability of the application. Elastic Beanstalk enhanced health reporting provides a status descriptor to gauge the severity of the identified issues and identify possible causes to investigate. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | AWS CloudTrail can help in non-repudiation by recording AWS Management Console actions and API calls. You can identify the users and AWS accounts that called an AWS service, the source IP address where the calls generated, and the timings of the calls. Details of captured data are seen within AWS CloudTrail Record Contents. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | The collection of Simple Storage Service (Amazon S3) data events helps in detecting any anomalous activity. The details include AWS account information that accessed an Amazon S3 bucket, IP address, and time of event. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Ensure Amazon OpenSearch Service domains have error logs enabled and streamed to Amazon CloudWatch Logs for retention and response. Domain error logs can assist with security and access audits, and can help to diagnose availability issues. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Ensure Amazon OpenSearch Service domains have error logs enabled and streamed to Amazon CloudWatch Logs for retention and response. OpenSearch Service error logs can assist with security and access audits, and can help to diagnose availability issues. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Monitoring is an important part of maintaining the reliability, availability, and performance of Amazon Elastic Container Service (ECS) and your AWS solutions. Container Insights also provides diagnostic information, such as container restart failures, to help you isolate issues and resolve them quickly. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Elastic Load Balancing activity is a central point of communication within an environment. Ensure ELB logging is enabled. The collected data provides detailed information about requests sent to the ELB. Each log contains information such as the time the request was received, the client's IP address, latencies, request paths, and server responses. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | AWS CloudTrail records AWS Management Console actions and API calls. You can identify which users and accounts called AWS, the source IP address from where the calls were made, and when the calls occurred. CloudTrail will deliver log files from all AWS Regions to your S3 bucket if MULTI_REGION_CLOUD_TRAIL_ENABLED is enabled. Additionally, when AWS launches a new Region, CloudTrail will create the same trail in the new Region. As a result, you will receive log files containing API activity for the new Region without taking any action. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | To help with logging and monitoring within your environment, ensure Amazon Relational Database Service (Amazon RDS) logging is enabled. With Amazon RDS logging, you can capture events such as connections, disconnections, queries, or tables queried. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Enable this rule to help improve Amazon Elastic Compute Cloud (Amazon EC2) instance monitoring on the Amazon EC2 console, which displays monitoring graphs with a 1-minute period for the instance. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Enable this rule to help notify the appropriate personnel through Amazon Simple Queue Service (Amazon SQS) or Amazon Simple Notification Service (Amazon SNS) when a function has failed. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Enable Amazon Relational Database Service (Amazon RDS) to help monitor Amazon RDS availability. This provides detailed visibility into the health of your Amazon RDS database instances. When the Amazon RDS storage is using more than one underlying physical device, Enhanced Monitoring collects the data for each device. Also, when the Amazon RDS database instance is running in a Multi-AZ deployment, the data for each device on the secondary host is collected, and the secondary host metrics. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Enhanced VPC routing forces all COPY and UNLOAD traffic between the cluster and data repositories to go through your Amazon VPC. You can then use VPC features such as security groups and network access control lists to secure network traffic. You can also use VPC flow logs to monitor network traffic. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | Amazon Simple Storage Service (Amazon S3) server access logging provides a method to monitor the network for potential cybersecurity events. The events are monitored by capturing detailed records for the requests that are made to an Amazon S3 bucket. Each access log record provides details about a single access request. The details include the requester, bucket name, request time, request action, response status, and an error code, if relevant. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | The VPC flow logs provide detailed records for information about the IP traffic going to and from network interfaces in your Amazon Virtual Private Cloud (Amazon VPC). By default, the flow log record includes values for the different components of the IP flow, including the source, destination, and protocol. | |
REL-6 | How do you monitor workload resources? Logs and metrics are powerful tools to gain insight into the health of your workload. You can configure your workload to monitor logs and metrics and send notifications when thresholds are crossed or significant events occur. Monitoring enables your workload to recognize when low-performance thresholds are crossed or failures occur, so it can recover automatically in response. | To help with logging and monitoring within your environment, enable AWS WAF (V2) logging on regional and global web ACLs. AWS WAF logging provides detailed information about the traffic that is analyzed by your web ACL. The logs record the time that AWS WAF received the request from your AWS resource, information about the request, and an action for the rule that each request matched. | |
REL-7 | How do you design your workload to adapt to changes in demand? A scalable workload provides elasticity to add or remove resources automatically so that they closely match the current demand at any given point in time. | Amazon DynamoDB auto scaling uses the AWS Application Auto Scaling service to adjust provisioned throughput capacity that automatically responds to actual traffic patterns. This enables a table or a global secondary index to increase its provisioned read/write capacity to handle sudden increases in traffic, without throttling. | |
REL-7 | How do you design your workload to adapt to changes in demand? A scalable workload provides elasticity to add or remove resources automatically so that they closely match the current demand at any given point in time. | The Elastic Load Balancer (ELB) health checks for Amazon Elastic Compute Cloud (Amazon EC2) Auto Scaling groups support maintenance of adequate capacity and availability. The load balancer periodically sends pings, attempts connections, or sends requests to test Amazon EC2 instances health in an auto-scaling group. If an instance is not reporting back, traffic is sent to a new Amazon EC2 instance. | |
REL-7 | How do you design your workload to adapt to changes in demand? A scalable workload provides elasticity to add or remove resources automatically so that they closely match the current demand at any given point in time. | Amazon DynamoDB auto scaling uses the AWS Application Auto Scaling service to adjust provisioned throughput capacity that automatically responds to actual traffic patterns. This enables a table or a global secondary index to increase its provisioned read/write capacity to handle sudden increases in traffic, without throttling. | |
REL-8 | How do you implement change? Controlled changes are necessary to deploy new functionality, and to ensure that the workloads and the operating environment are running known software and can be patched or replaced in a predictable manner. If these changes are uncontrolled, then it makes it difficult to predict the effect of these changes, or to address issues that arise because of them. | This rule ensures that Amazon Redshift clusters have the preferred settings for your organization. Specifically, that they have preferred maintenance windows and automated snapshot retention periods for the database. This rule requires you to set the allowVersionUpgrade. The default is true. It also lets you optionally set the preferredMaintenanceWindow (the default is sat:16:00-sat:16:30), and the automatedSnapshotRetentionPeriod (the default is 1). The actual values should reflect your organization's policies. | |
REL-8 | How do you implement change? Controlled changes are necessary to deploy new functionality, and to ensure that the workloads and the operating environment are running known software and can be patched or replaced in a predictable manner. If these changes are uncontrolled, then it makes it difficult to predict the effect of these changes, or to address issues that arise because of them. | Enable automatic minor version upgrades on your Amazon Relational Database Service (RDS) instances to ensure the latest minor version updates to the Relational Database Management System (RDBMS) are installed, which may include security patches and bug fixes. | |
REL-8 | How do you implement change? Controlled changes are necessary to deploy new functionality, and to ensure that the workloads and the operating environment are running known software and can be patched or replaced in a predictable manner. If these changes are uncontrolled, then it makes it difficult to predict the effect of these changes, or to address issues that arise because of them. | Enable this rule to help with identification and documentation of Amazon Elastic Compute Cloud (Amazon EC2) vulnerabilities. The rule checks if Amazon EC2 instance patch compliance in AWS Systems Manager as required by your organization's policies and procedures. | |
REL-8 | How do you implement change? Controlled changes are necessary to deploy new functionality, and to ensure that the workloads and the operating environment are running known software and can be patched or replaced in a predictable manner. If these changes are uncontrolled, then it makes it difficult to predict the effect of these changes, or to address issues that arise because of them. | Use AWS Systems Manager Associations to help with inventory of software platforms and applications within an organization. AWS Systems Manager assigns a configuration state to your managed instances and allows you to set baselines of operating system patch levels, software installations, application configurations, and other details about your environment. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon Aurora resources are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your AWS Backup plan is set for a minimum frequency and retention. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. This rule allows you to set the requiredFrequencyValue (Config default: 1), requiredRetentionDays (Config default: 35) and requiredFrequencyUnit (Config default: days) parameters. The actual value should reflect your organizations requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your AWS Backup recovery points have a minimum retention period set. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. This rule allows you to set the requiredRetentionDays (config default: 35) parameter. The actual value should reflect your organizations requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Ensure that encryption is enabled for your AWS Backup recovery points. Because sensitive data can exist at rest, enable encryption at rest to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | The backup feature of Amazon RDS creates backups of your databases and transaction logs. Amazon RDS automatically creates a storage volume snapshot of your DB instance, backing up the entire DB instance. The system allows you to set specific retention periods to meet your resilience requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon DynamoDB tables are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Enable this rule to check that information has been backed up. It also maintains the backups by ensuring that point-in-time recovery is enabled in Amazon DynamoDB. The recovery maintains continuous backups of your table for the last 35 days. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Ensure that encryption is enabled for your Amazon DynamoDB tables. Because sensitive data can exist at rest in these tables, enable encryption at rest to help protect that data. By default, DynamoDB tables are encrypted with an AWS owned customer master key (CMK). | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon Elastic Block Store (Amazon EBS) volumes are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help protect data at rest, ensure that encryption is enabled for your Amazon Elastic Block Store (Amazon EBS) volumes. Because sensitive data can exist at rest in these volumes, enable encryption at rest to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Because sensitive data can exist and to help protect data at rest, ensure encryption is enabled for your Amazon Elastic Block Store (Amazon EBS) volumes. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon Elastic Compute Cloud (Amazon EC2) resources are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon Elastic File System (Amazon EFS) file systems are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Because sensitive data can exist and to help protect data at rest, ensure encryption is enabled for your Amazon Elastic File System (EFS). | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | When automatic backups are enabled, Amazon ElastiCache creates a backup of the cluster on a daily basis. The backup can be retained for a number of days as specified by your organization. Automatic backups can help guard against data loss. If a failure occurs, you can create a new cluster, which restores your data from the most recent backup. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | This rule ensures that Elastic Load Balancing has deletion protection enabled. Use this feature to prevent your load balancer from being accidentally or maliciously deleted, which can lead to loss of availability for your applications. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon FSx file systems are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon Relational Database Service (Amazon RDS) instances are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help protect data at rest, ensure that encryption is enabled for your Amazon Relational Database Service (Amazon RDS) instances. Because sensitive data can exist at rest in Amazon RDS instances, enable encryption at rest to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Ensure that encryption is enabled for your Amazon Relational Database Service (Amazon RDS) snapshots. Because sensitive data can exist at rest, enable encryption at rest to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Ensure Amazon Relational Database Service (Amazon RDS) instances have deletion protection enabled. Use deletion protection to prevent your Amazon RDS instances from being accidentally or maliciously deleted, which can lead to loss of availability for your applications. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Ensure that your Amazon Simple Storage Service (Amazon S3) bucket has lock enabled, by default. Because sensitive data can exist at rest in S3 buckets, enforce object locks at rest to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Amazon Simple Storage Service (Amazon S3) Cross-Region Replication (CRR) supports maintaining adequate capacity and availability. CRR enables automatic, asynchronous copying of objects across Amazon S3 buckets to help ensure that data availability is maintained. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help protect data at rest, ensure encryption is enabled for your Amazon Simple Storage Service (Amazon S3) buckets. Because sensitive data can exist at rest in Amazon S3 buckets, enable encryption to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Ensure that encryption is enabled for your Amazon Simple Storage Service (Amazon S3) buckets. Because sensitive data can exist at rest in an Amazon S3 bucket, enable encryption at rest to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | An optimized instance in Amazon Elastic Block Store (Amazon EBS) provides additional, dedicated capacity for Amazon EBS I/O operations. This optimization provides the most efficient performance for your EBS volumes by minimizing contention between Amazon EBS I/O operations and other traffic from your instance. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help with data back-up processes, ensure your Amazon Redshift clusters have automated snapshots. When automated snapshots are enabled for a cluster, Redshift periodically takes snapshots of that cluster. By default, Redshift takes a snapshot every eight hours or every 5 GB for each node of data changes, or whichever comes first. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | To help protect data at rest, ensure encryption with AWS Key Management Service (AWS KMS) is enabled for your Amazon Redshift cluster. Because sensitive data can exist at rest in Redshift clusters, enable encryption at rest to help protect that data. | |
REL-9 | How do you back up data? Back up data, applications, and configuration to meet your requirements for recovery time objectives (RTO) and recovery point objectives (RPO). | Amazon Simple Storage Service (Amazon S3) bucket versioning helps keep multiple variants of an object in the same Amazon S3 bucket. Use versioning to preserve, retrieve, and restore every version of every object stored in your Amazon S3 bucket. Versioning helps you to easily recover from unintended user actions and application failures. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | Enable cross-zone load balancing for your Elastic Load Balancers (ELBs) to help maintain adequate capacity and availability. The cross-zone load balancing reduces the need to maintain equivalent numbers of instances in each enabled availability zone. It also improves your application's ability to handle the loss of one or more instances. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | Elastic Load Balancing (ELB) automatically distributes your incoming traffic across multiple targets, such as EC2 instances, containers, and IP addresses, in an availability zone. To ensure high availability, ensure your ELB has registered instances from multiple Availability Zones. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | Elastic Load Balancing (ELB) automatically distributes your incoming traffic across multiple targets, such as EC2 instances, containers, and IP addresses, in an availability zone. To ensure high availability, ensure your ELB has registered instances from multiple Availability Zones. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | If your AWS Lambda function is configured to connect to a virtual private cloud (VPC) in your account, deploy the AWS Lambda function in at least two different Availability Zones to ensure that it is your function is available to process events in case of a service interruption in a single zone. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | Amazon OpenSearch Service (OpenSearch Service) requires at least three data nodes for high availability and fault-tolerance. Deploying an OpenSearch Service domain with at least three data nodes ensures cluster operations if a node fails. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | Multi-AZ support in Amazon Relational Database Service (Amazon RDS) provides enhanced availability and durability for database instances. When you provision a Multi-AZ database instance, Amazon RDS automatically creates a primary database instance, and synchronously replicates the data to a standby instance in a different Availability Zone. Each Availability Zone runs on its own physically distinct, independent infrastructure, and is engineered to be highly reliable. In case of an infrastructure failure, Amazon RDS performs an automatic failover to the standby so that you can resume database operations as soon as the failover is complete. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | Multi-AZ support in Amazon Relational Database Service (Amazon RDS) provides enhanced availability and durability for database instances. When you provision a Multi-AZ database instance, Amazon RDS automatically creates a primary database instance, and synchronously replicates the data to a standby instance in a different Availability Zone. Each Availability Zone runs on its own physically distinct, independent infrastructure, and is engineered to be highly reliable. In case of an infrastructure failure, Amazon RDS performs an automatic failover to the standby so that you can resume database operations as soon as the failover is complete. | |
REL-10 | How do you use fault isolation to protect your workload? Fault isolated boundaries limit the effect of a failure within a workload to a limited number of components. Components outside of the boundary are unaffected by the failure. Using multiple fault isolated boundaries, you can limit the impact on your workload. | Redundant Site-to-Site VPN tunnels can be implemented to achieve resilience requirements. It uses two tunnels to help ensure connectivity in case one of the Site-to-Site VPN connections becomes unavailable. To protect against a loss of connectivity, in case your customer gateway becomes unavailable, you can set up a second Site-to-Site VPN connection to your Amazon Virtual Private Cloud (Amazon VPC) and virtual private gateway by using a second customer gateway. |
Template
The template is available on GitHub: Operational Best Practices for AWS Well-Architected Reliability
Pillar