Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Amazon Textract Textract-Beispiele mit AWS CLI
Die folgenden Codebeispiele zeigen Ihnen, wie Sie mithilfe von Amazon Textract Aktionen ausführen und allgemeine Szenarien implementieren. AWS Command Line Interface
Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Aktionen zeigen Ihnen zwar, wie Sie einzelne Servicefunktionen aufrufen, aber Sie können Aktionen im Kontext der zugehörigen Szenarien sehen.
Jedes Beispiel enthält einen Link zum vollständigen Quellcode, in dem Sie Anweisungen zum Einrichten und Ausführen des Codes im Kontext finden.
Themen
Aktionen
Das folgende Codebeispiel zeigt die Verwendunganalyze-document
.
- AWS CLI
-
Um Text in einem Dokument zu analysieren
Das folgende
analyze-document
Beispiel zeigt, wie Text in einem Dokument analysiert wird.Linux/macOS:
aws textract analyze-document \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
'Windows:
aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region
region-name
Ausgabe:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }
Weitere Informationen finden Sie unter Analysieren von Dokumenttext mit Amazon Textract im Amazon Textract Developers Guide
-
APIEinzelheiten finden Sie unter AnalyzeDocument AWS CLI
Befehlsreferenz.
-
Das folgende Codebeispiel zeigt die Verwendungdetect-document-text
.
- AWS CLI
-
Um Text in einem Dokument zu erkennen
detect-document-text
Das folgende Beispiel zeigt, wie Text in einem Dokument erkannt wird.Linux/macOS:
aws textract detect-document-text \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
'Windows:
aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
Ausgabe:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }
Weitere Informationen finden Sie unter Erkennen von Dokumenttext mit Amazon Textract im Amazon Textract Developers Guide
-
APIEinzelheiten finden Sie unter DetectDocumentText AWS CLI
Befehlsreferenz.
-
Das folgende Codebeispiel zeigt die Verwendungget-document-analysis
.
- AWS CLI
-
Um die Ergebnisse einer asynchronen Textanalyse eines mehrseitigen Dokuments zu erhalten
Das folgende
get-document-analysis
Beispiel zeigt, wie die Ergebnisse einer asynchronen Textanalyse eines mehrseitigen Dokuments abgerufen werden.aws textract get-document-analysis \ --job-id
df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b
\ --max-results1000
Ausgabe:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
Weitere Informationen finden Sie unter Erkennen und Analysieren von Text in mehrseitigen Dokumenten im Amazon Textract Developers Guide
-
APIEinzelheiten finden Sie unter GetDocumentAnalysis AWS CLI
Befehlsreferenz.
-
Das folgende Codebeispiel zeigt die Verwendungget-document-text-detection
.
- AWS CLI
-
Um die Ergebnisse der asynchronen Texterkennung in einem mehrseitigen Dokument abzurufen
Das folgende
get-document-text-detection
Beispiel zeigt, wie die Ergebnisse der asynchronen Texterkennung in einem mehrseitigen Dokument abgerufen werden.aws textract get-document-text-detection \ --job-id
57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9
\ --max-results1000
Output
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
Weitere Informationen finden Sie unter Erkennen und Analysieren von Text in mehrseitigen Dokumenten im Amazon Textract Developers Guide
-
APIEinzelheiten finden Sie unter GetDocumentTextDetection AWS CLI
Befehlsreferenz.
-
Das folgende Codebeispiel zeigt die Verwendungstart-document-analysis
.
- AWS CLI
-
Um mit der Analyse von Text in einem mehrseitigen Dokument zu beginnen
Das folgende
start-document-analysis
Beispiel zeigt, wie die asynchrone Analyse von Text in einem mehrseitigen Dokument gestartet wird.Linux/macOS:
aws textract start-document-analysis \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Windows:
aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Ausgabe:
{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }
Weitere Informationen finden Sie unter Erkennen und Analysieren von Text in mehrseitigen Dokumenten im Amazon Textract Developers Guide
-
APIEinzelheiten finden Sie unter StartDocumentAnalysis AWS CLI
Befehlsreferenz.
-
Das folgende Codebeispiel zeigt die Verwendungstart-document-text-detection
.
- AWS CLI
-
Um mit der Erkennung von Text in einem mehrseitigen Dokument zu beginnen
Das folgende
start-document-text-detection
Beispiel zeigt, wie die asynchrone Erkennung von Text in einem mehrseitigen Dokument gestartet wird.Linux/macOS:
aws textract start-document-text-detection \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleARN"
Windows:
aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Ausgabe:
{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }
Weitere Informationen finden Sie unter Erkennen und Analysieren von Text in mehrseitigen Dokumenten im Amazon Textract Developers Guide
-
APIEinzelheiten finden Sie unter StartDocumentTextDetection AWS CLI
Befehlsreferenz.
-