Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Amazon Comprehend Comprehend-Beispiele mit AWS SDK for .NET
Die folgenden Codebeispiele zeigen Ihnen, wie Sie mithilfe von Amazon Comprehend Aktionen ausführen und allgemeine Szenarien implementieren. AWS SDK for .NET
Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Aktionen zeigen Ihnen zwar, wie Sie einzelne Servicefunktionen aufrufen, aber Sie können Aktionen im Kontext der zugehörigen Szenarien sehen.
Szenarien sind Codebeispiele, die Ihnen zeigen, wie Sie bestimmte Aufgaben ausführen, indem Sie mehrere Funktionen innerhalb eines Dienstes oder in Kombination mit anderen aufrufen AWS-Services.
Jedes Beispiel enthält einen Link zum vollständigen Quellcode, in dem Sie Anweisungen zum Einrichten und Ausführen des Codes im Kontext finden.
Aktionen
Das folgende Codebeispiel zeigt die VerwendungDetectDominantLanguage
.
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example calls the Amazon Comprehend service to determine the /// dominant language. /// </summary> public static class DetectDominantLanguage { /// <summary> /// Calls Amazon Comprehend to determine the dominant language used in /// the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle."; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); Console.WriteLine("Calling DetectDominantLanguage\n"); var detectDominantLanguageRequest = new DetectDominantLanguageRequest() { Text = text, }; var detectDominantLanguageResponse = await comprehendClient.DetectDominantLanguageAsync(detectDominantLanguageRequest); foreach (var dl in detectDominantLanguageResponse.Languages) { Console.WriteLine($"Language Code: {dl.LanguageCode}, Score: {dl.Score}"); } Console.WriteLine("Done"); } }
-
APIEinzelheiten finden Sie DetectDominantLanguagein der AWS SDK for .NET APIReferenz.
-
Das folgende Codebeispiel zeigt die VerwendungDetectEntities
.
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the AmazonComprehend service detect any /// entities in submitted text. /// </summary> public static class DetectEntities { /// <summary> /// The main method calls the DetectEntitiesAsync method to find any /// entities in the sample code. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); Console.WriteLine("Calling DetectEntities\n"); var detectEntitiesRequest = new DetectEntitiesRequest() { Text = text, LanguageCode = "en", }; var detectEntitiesResponse = await comprehendClient.DetectEntitiesAsync(detectEntitiesRequest); foreach (var e in detectEntitiesResponse.Entities) { Console.WriteLine($"Text: {e.Text}, Type: {e.Type}, Score: {e.Score}, BeginOffset: {e.BeginOffset}, EndOffset: {e.EndOffset}"); } Console.WriteLine("Done"); } }
-
APIEinzelheiten finden Sie DetectEntitiesin der AWS SDK for .NET APIReferenz.
-
Das folgende Codebeispiel zeigt die VerwendungDetectKeyPhrases
.
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the Amazon Comprehend service to /// search text for key phrases. /// </summary> public static class DetectKeyPhrase { /// <summary> /// This method calls the Amazon Comprehend method DetectKeyPhrasesAsync /// to detect any key phrases in the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); // Call DetectKeyPhrases API Console.WriteLine("Calling DetectKeyPhrases"); var detectKeyPhrasesRequest = new DetectKeyPhrasesRequest() { Text = text, LanguageCode = "en", }; var detectKeyPhrasesResponse = await comprehendClient.DetectKeyPhrasesAsync(detectKeyPhrasesRequest); foreach (var kp in detectKeyPhrasesResponse.KeyPhrases) { Console.WriteLine($"Text: {kp.Text}, Score: {kp.Score}, BeginOffset: {kp.BeginOffset}, EndOffset: {kp.EndOffset}"); } Console.WriteLine("Done"); } }
-
APIEinzelheiten finden Sie DetectKeyPhrasesin der AWS SDK for .NET APIReferenz.
-
Das folgende Codebeispiel zeigt die VerwendungDetectPiiEntities
.
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the Amazon Comprehend service to find /// personally identifiable information (PII) within text submitted to the /// DetectPiiEntitiesAsync method. /// </summary> public class DetectingPII { /// <summary> /// This method calls the DetectPiiEntitiesAsync method to locate any /// personally dientifiable information within the supplied text. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); var text = @"Hello Paul Santos. The latest statement for your credit card account 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109."; var request = new DetectPiiEntitiesRequest { Text = text, LanguageCode = "EN", }; var response = await comprehendClient.DetectPiiEntitiesAsync(request); if (response.Entities.Count > 0) { foreach (var entity in response.Entities) { var entityValue = text.Substring(entity.BeginOffset, entity.EndOffset - entity.BeginOffset); Console.WriteLine($"{entity.Type}: {entityValue}"); } } } }
-
APIEinzelheiten finden Sie DetectPiiEntitiesin der AWS SDK for .NET APIReferenz.
-
Das folgende Codebeispiel zeigt die VerwendungDetectSentiment
.
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to detect the overall sentiment of the supplied /// text using the Amazon Comprehend service. /// </summary> public static class DetectSentiment { /// <summary> /// This method calls the DetetectSentimentAsync method to analyze the /// supplied text and determine the overal sentiment. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); // Call DetectKeyPhrases API Console.WriteLine("Calling DetectSentiment"); var detectSentimentRequest = new DetectSentimentRequest() { Text = text, LanguageCode = "en", }; var detectSentimentResponse = await comprehendClient.DetectSentimentAsync(detectSentimentRequest); Console.WriteLine($"Sentiment: {detectSentimentResponse.Sentiment}"); Console.WriteLine("Done"); } }
-
APIEinzelheiten finden Sie DetectSentimentin der AWS SDK for .NET APIReferenz.
-
Das folgende Codebeispiel zeigt die VerwendungDetectSyntax
.
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use Amazon Comprehend to detect syntax /// elements by calling the DetectSyntaxAsync method. /// </summary> public class DetectingSyntax { /// <summary> /// This method calls DetectSynaxAsync to identify the syntax elements /// in the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); // Call DetectSyntax API Console.WriteLine("Calling DetectSyntaxAsync\n"); var detectSyntaxRequest = new DetectSyntaxRequest() { Text = text, LanguageCode = "en", }; DetectSyntaxResponse detectSyntaxResponse = await comprehendClient.DetectSyntaxAsync(detectSyntaxRequest); foreach (SyntaxToken s in detectSyntaxResponse.SyntaxTokens) { Console.WriteLine($"Text: {s.Text}, PartOfSpeech: {s.PartOfSpeech.Tag}, BeginOffset: {s.BeginOffset}, EndOffset: {s.EndOffset}"); } Console.WriteLine("Done"); } }
-
APIEinzelheiten finden Sie DetectSyntaxin der AWS SDK for .NET APIReferenz.
-
Das folgende Codebeispiel zeigt die VerwendungStartTopicsDetectionJob
.
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example scans the documents in an Amazon Simple Storage Service /// (Amazon S3) bucket and analyzes it for topics. The results are stored /// in another bucket and then the resulting job properties are displayed /// on the screen. This example was created using the AWS SDK for .NEt /// version 3.7 and .NET Core version 5.0. /// </summary> public static class TopicModeling { /// <summary> /// This methos calls a topic detection job by calling the Amazon /// Comprehend StartTopicsDetectionJobRequest. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); string inputS3Uri = "s3://input bucket/input path"; InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE; string outputS3Uri = "s3://output bucket/output path"; string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access role"; int numberOfTopics = 10; var startTopicsDetectionJobRequest = new StartTopicsDetectionJobRequest() { InputDataConfig = new InputDataConfig() { S3Uri = inputS3Uri, InputFormat = inputDocFormat, }, OutputDataConfig = new OutputDataConfig() { S3Uri = outputS3Uri, }, DataAccessRoleArn = dataAccessRoleArn, NumberOfTopics = numberOfTopics, }; var startTopicsDetectionJobResponse = await comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest); var jobId = startTopicsDetectionJobResponse.JobId; Console.WriteLine("JobId: " + jobId); var describeTopicsDetectionJobRequest = new DescribeTopicsDetectionJobRequest() { JobId = jobId, }; var describeTopicsDetectionJobResponse = await comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest); PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties); var listTopicsDetectionJobsResponse = await comprehendClient.ListTopicsDetectionJobsAsync(new ListTopicsDetectionJobsRequest()); foreach (var props in listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList) { PrintJobProperties(props); } } /// <summary> /// This method is a helper method that displays the job properties /// from the call to StartTopicsDetectionJobRequest. /// </summary> /// <param name="props">A list of properties from the call to /// StartTopicsDetectionJobRequest.</param> private static void PrintJobProperties(TopicsDetectionJobProperties props) { Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName}, JobStatus: {props.JobStatus}"); Console.WriteLine($"NumberOfTopics: {props.NumberOfTopics}\nInputS3Uri: {props.InputDataConfig.S3Uri}"); Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat}, OutputS3Uri: {props.OutputDataConfig.S3Uri}"); } }
-
APIEinzelheiten finden Sie StartTopicsDetectionJobin der AWS SDK for .NET APIReferenz.
-
Szenarien
Das folgende Codebeispiel zeigt, wie Sie eine Anwendung erstellen, die Kundenkommentarkarten analysiert, sie aus der ursprünglichen Sprache übersetzt, die Stimmung ermittelt und auf der Grundlage des übersetzten Texts eine Audiodatei generiert.
- AWS SDK for .NET
-
Diese Beispielanwendung analysiert und speichert Kundenfeedback-Karten. Sie ist auf die Anforderungen eines fiktiven Hotels in New York City zugeschnitten. Das Hotel erhält Feedback von Gästen in Form von physischen Kommentarkarten in verschiedenen Sprachen. Dieses Feedback wird über einen Webclient in die App hochgeladen. Nachdem ein Bild einer Kommentarkarte hochgeladen wurde, werden folgende Schritte ausgeführt:
-
Der Text wird mithilfe von Amazon Textract aus dem Bild extrahiert.
-
Amazon Comprehend ermittelt die Stimmung und die Sprache des extrahierten Textes.
-
Der extrahierte Text wird mithilfe von Amazon Translate ins Englische übersetzt.
-
Amazon Polly generiert auf der Grundlage des extrahierten Texts eine Audiodatei.
Die vollständige App kann mithilfe des AWS CDK bereitgestellt werden. Den Quellcode und Anweisungen zur Bereitstellung finden Sie im Projekt unter GitHub
. In diesem Beispiel verwendete Dienste
Amazon Comprehend
Lambda
Amazon Polly
Amazon Textract
Amazon Translate
-