Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Verwenden Sie mit CreateModel
einem AWS SDK
Das folgende Codebeispiel zeigt die VerwendungCreateModel
.
Weitere Informationen finden Sie unter Trainieren Ihres Modells.
- Python
-
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. class Models: @staticmethod def create_model( lookoutvision_client, project_name, training_results, tag_key=None, tag_key_value=None, ): """ Creates a version of a Lookout for Vision model. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project in which you want to create a model. :param training_results: The Amazon S3 location where training results are stored. :param tag_key: The key for a tag to add to the model. :param tag_key_value - A value associated with the tag_key. return: The model status and version. """ try: logger.info("Training model...") output_bucket, output_folder = training_results.replace("s3://", "").split( "/", 1 ) output_config = { "S3Location": {"Bucket": output_bucket, "Prefix": output_folder} } tags = [] if tag_key is not None: tags = [{"Key": tag_key, "Value": tag_key_value}] response = lookoutvision_client.create_model( ProjectName=project_name, OutputConfig=output_config, Tags=tags ) logger.info("ARN: %s", response["ModelMetadata"]["ModelArn"]) logger.info("Version: %s", response["ModelMetadata"]["ModelVersion"]) logger.info("Started training...") print("Training started. Training might take several hours to complete.") # Wait until training completes. finished = False status = "UNKNOWN" while finished is False: model_description = lookoutvision_client.describe_model( ProjectName=project_name, ModelVersion=response["ModelMetadata"]["ModelVersion"], ) status = model_description["ModelDescription"]["Status"] if status == "TRAINING": logger.info("Model training in progress...") time.sleep(600) continue if status == "TRAINED": logger.info("Model was successfully trained.") else: logger.info( "Model training failed: %s ", model_description["ModelDescription"]["StatusMessage"], ) finished = True except ClientError: logger.exception("Couldn't train model.") raise else: return status, response["ModelMetadata"]["ModelVersion"]
-
APIEinzelheiten finden Sie unter CreateModelPython (Boto3) API -Referenz.AWS SDK
-
CreateDataset
CreateProject