Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
EMRAmazon-Beispiele SDK für die Verwendung von Python (Boto3)
Die folgenden Codebeispiele zeigen Ihnen, wie Sie mithilfe von AWS SDK for Python (Boto3) mit Amazon Aktionen ausführen und allgemeine Szenarien implementierenEMR.
Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Aktionen zeigen Ihnen zwar, wie Sie einzelne Servicefunktionen aufrufen, aber Sie können Aktionen im Kontext der zugehörigen Szenarien sehen.
Szenarien sind Codebeispiele, die Ihnen zeigen, wie Sie bestimmte Aufgaben ausführen, indem Sie mehrere Funktionen innerhalb eines Dienstes oder in Kombination mit anderen aufrufen AWS-Services.
Jedes Beispiel enthält einen Link zum vollständigen Quellcode, in dem Sie Anweisungen zum Einrichten und Ausführen des Codes im Kontext finden.
Aktionen
Das folgende Codebeispiel zeigt die VerwendungAddJobFlowSteps
.
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. Fügen Sie einen Spark-Schritt hinzu, der vom Cluster ausgeführt wird, sobald er hinzugefügt wird.
def add_step(cluster_id, name, script_uri, script_args, emr_client): """ Adds a job step to the specified cluster. This example adds a Spark step, which is run by the cluster as soon as it is added. :param cluster_id: The ID of the cluster. :param name: The name of the step. :param script_uri: The URI where the Python script is stored. :param script_args: Arguments to pass to the Python script. :param emr_client: The Boto3 EMR client object. :return: The ID of the newly added step. """ try: response = emr_client.add_job_flow_steps( JobFlowId=cluster_id, Steps=[ { "Name": name, "ActionOnFailure": "CONTINUE", "HadoopJarStep": { "Jar": "command-runner.jar", "Args": [ "spark-submit", "--deploy-mode", "cluster", script_uri, *script_args, ], }, } ], ) step_id = response["StepIds"][0] logger.info("Started step with ID %s", step_id) except ClientError: logger.exception("Couldn't start step %s with URI %s.", name, script_uri) raise else: return step_id
Führen Sie einen Amazon EMR File System (EMRFS) -Befehl als Job-Schritt auf einem Cluster aus. Dies kann verwendet werden, um EMRFS Befehle in einem Cluster zu automatisieren, anstatt Befehle manuell über eine SSH Verbindung auszuführen.
import boto3 from botocore.exceptions import ClientError def add_emrfs_step(command, bucket_url, cluster_id, emr_client): """ Add an EMRFS command as a job flow step to an existing cluster. :param command: The EMRFS command to run. :param bucket_url: The URL of a bucket that contains tracking metadata. :param cluster_id: The ID of the cluster to update. :param emr_client: The Boto3 Amazon EMR client object. :return: The ID of the added job flow step. Status can be tracked by calling the emr_client.describe_step() function. """ job_flow_step = { "Name": "Example EMRFS Command Step", "ActionOnFailure": "CONTINUE", "HadoopJarStep": { "Jar": "command-runner.jar", "Args": ["/usr/bin/emrfs", command, bucket_url], }, } try: response = emr_client.add_job_flow_steps( JobFlowId=cluster_id, Steps=[job_flow_step] ) step_id = response["StepIds"][0] print(f"Added step {step_id} to cluster {cluster_id}.") except ClientError: print(f"Couldn't add a step to cluster {cluster_id}.") raise else: return step_id def usage_demo(): emr_client = boto3.client("emr") # Assumes the first waiting cluster has EMRFS enabled and has created metadata # with the default name of 'EmrFSMetadata'. cluster = emr_client.list_clusters(ClusterStates=["WAITING"])["Clusters"][0] add_emrfs_step( "sync", "s3://elasticmapreduce/samples/cloudfront", cluster["Id"], emr_client ) if __name__ == "__main__": usage_demo()
-
APIEinzelheiten finden Sie unter AddJobFlowStepsPython (Boto3) API -Referenz.AWS SDK
-
Das folgende Codebeispiel zeigt, wie man es benutzt. DescribeCluster
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. def describe_cluster(cluster_id, emr_client): """ Gets detailed information about a cluster. :param cluster_id: The ID of the cluster to describe. :param emr_client: The Boto3 EMR client object. :return: The retrieved cluster information. """ try: response = emr_client.describe_cluster(ClusterId=cluster_id) cluster = response["Cluster"] logger.info("Got data for cluster %s.", cluster["Name"]) except ClientError: logger.exception("Couldn't get data for cluster %s.", cluster_id) raise else: return cluster
-
APIEinzelheiten finden Sie unter DescribeClusterPython (Boto3) API -Referenz.AWS SDK
-
Das folgende Codebeispiel zeigt, wie man es benutzt. DescribeStep
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. def describe_step(cluster_id, step_id, emr_client): """ Gets detailed information about the specified step, including the current state of the step. :param cluster_id: The ID of the cluster. :param step_id: The ID of the step. :param emr_client: The Boto3 EMR client object. :return: The retrieved information about the specified step. """ try: response = emr_client.describe_step(ClusterId=cluster_id, StepId=step_id) step = response["Step"] logger.info("Got data for step %s.", step_id) except ClientError: logger.exception("Couldn't get data for step %s.", step_id) raise else: return step
-
APIEinzelheiten finden Sie unter DescribeStepPython (Boto3) API -Referenz.AWS SDK
-
Das folgende Codebeispiel zeigt, wie man es benutzt. ListSteps
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. def list_steps(cluster_id, emr_client): """ Gets a list of steps for the specified cluster. In this example, all steps are returned, including completed and failed steps. :param cluster_id: The ID of the cluster. :param emr_client: The Boto3 EMR client object. :return: The list of steps for the specified cluster. """ try: response = emr_client.list_steps(ClusterId=cluster_id) steps = response["Steps"] logger.info("Got %s steps for cluster %s.", len(steps), cluster_id) except ClientError: logger.exception("Couldn't get steps for cluster %s.", cluster_id) raise else: return steps
-
APIEinzelheiten finden Sie unter ListStepsPython (Boto3) API -Referenz.AWS SDK
-
Das folgende Codebeispiel zeigt, wie man es benutzt. RunJobFlow
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. def run_job_flow( name, log_uri, keep_alive, applications, job_flow_role, service_role, security_groups, steps, emr_client, ): """ Runs a job flow with the specified steps. A job flow creates a cluster of instances and adds steps to be run on the cluster. Steps added to the cluster are run as soon as the cluster is ready. This example uses the 'emr-5.30.1' release. A list of recent releases can be found here: https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html. :param name: The name of the cluster. :param log_uri: The URI where logs are stored. This can be an Amazon S3 bucket URL, such as 's3://my-log-bucket'. :param keep_alive: When True, the cluster is put into a Waiting state after all steps are run. When False, the cluster terminates itself when the step queue is empty. :param applications: The applications to install on each instance in the cluster, such as Hive or Spark. :param job_flow_role: The IAM role assumed by the cluster. :param service_role: The IAM role assumed by the service. :param security_groups: The security groups to assign to the cluster instances. Amazon EMR adds all needed rules to these groups, so they can be empty if you require only the default rules. :param steps: The job flow steps to add to the cluster. These are run in order when the cluster is ready. :param emr_client: The Boto3 EMR client object. :return: The ID of the newly created cluster. """ try: response = emr_client.run_job_flow( Name=name, LogUri=log_uri, ReleaseLabel="emr-5.30.1", Instances={ "MasterInstanceType": "m5.xlarge", "SlaveInstanceType": "m5.xlarge", "InstanceCount": 3, "KeepJobFlowAliveWhenNoSteps": keep_alive, "EmrManagedMasterSecurityGroup": security_groups["manager"].id, "EmrManagedSlaveSecurityGroup": security_groups["worker"].id, }, Steps=[ { "Name": step["name"], "ActionOnFailure": "CONTINUE", "HadoopJarStep": { "Jar": "command-runner.jar", "Args": [ "spark-submit", "--deploy-mode", "cluster", step["script_uri"], *step["script_args"], ], }, } for step in steps ], Applications=[{"Name": app} for app in applications], JobFlowRole=job_flow_role.name, ServiceRole=service_role.name, EbsRootVolumeSize=10, VisibleToAllUsers=True, ) cluster_id = response["JobFlowId"] logger.info("Created cluster %s.", cluster_id) except ClientError: logger.exception("Couldn't create cluster.") raise else: return cluster_id
-
APIEinzelheiten finden Sie unter RunJobFlowPython (Boto3) API -Referenz.AWS SDK
-
Das folgende Codebeispiel zeigt, wie man es benutzt. TerminateJobFlows
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. def terminate_cluster(cluster_id, emr_client): """ Terminates a cluster. This terminates all instances in the cluster and cannot be undone. Any data not saved elsewhere, such as in an Amazon S3 bucket, is lost. :param cluster_id: The ID of the cluster to terminate. :param emr_client: The Boto3 EMR client object. """ try: emr_client.terminate_job_flows(JobFlowIds=[cluster_id]) logger.info("Terminated cluster %s.", cluster_id) except ClientError: logger.exception("Couldn't terminate cluster %s.", cluster_id) raise
-
APIEinzelheiten finden Sie unter TerminateJobFlowsPython (Boto3) API -Referenz.AWS SDK
-
Szenarien
Das folgende Codebeispiel zeigt, wie Sie einen kurzlebigen EMR Amazon-Cluster erstellen, der einen Schritt ausführt und nach Abschluss des Schritts automatisch beendet wird.
- SDKfür Python (Boto3)
-
Erstellen Sie mit Apache Spark einen kurzlebigen EMR Amazon-Cluster, der den Wert von Pi schätzt, um eine große Anzahl von Berechnungen zu parallelisieren. Der Job schreibt die Ausgabe in EMR Amazon-Logs und in einen Amazon Simple Storage Service (Amazon S3) -Bucket. Der Cluster beendet sich selbst, nachdem der Job abgeschlossen wurde.
Erstellen Sie einen Amazon-S3-Bucket und uploaden Sie ein Job-Skript.
Rollen erstellen AWS Identity and Access Management (IAM).
Erstellen Sie Amazon Elastic Compute Cloud (AmazonEC2) -Sicherheitsgruppen.
Erstellen Sie einen kurzlebigen Cluster und führen Sie einen einzelnen Arbeitsschritt aus.
Dieses Beispiel lässt sich am besten auf ansehen GitHub. Den vollständigen Quellcode und Anweisungen zur Einrichtung und Ausführung finden Sie im vollständigen Beispiel unter GitHub
. In diesem Beispiel verwendete Dienste
Amazon EMR
Das folgende Codebeispiel zeigt, wie Sie AWS Systems Manager ein Shell-Skript auf EMR Amazon-Instances ausführen, das zusätzliche Bibliotheken installiert. Auf diese Weise können Sie die Instanzverwaltung automatisieren, anstatt Befehle manuell über eine SSH Verbindung auszuführen.
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. import argparse import time import boto3 def install_libraries_on_core_nodes(cluster_id, script_path, emr_client, ssm_client): """ Copies and runs a shell script on the core nodes in the cluster. :param cluster_id: The ID of the cluster. :param script_path: The path to the script, typically an Amazon S3 object URL. :param emr_client: The Boto3 Amazon EMR client. :param ssm_client: The Boto3 AWS Systems Manager client. """ core_nodes = emr_client.list_instances( ClusterId=cluster_id, InstanceGroupTypes=["CORE"] )["Instances"] core_instance_ids = [node["Ec2InstanceId"] for node in core_nodes] print(f"Found core instances: {core_instance_ids}.") commands = [ # Copy the shell script from Amazon S3 to each node instance. f"aws s3 cp {script_path} /home/hadoop", # Run the shell script to install libraries on each node instance. "bash /home/hadoop/install_libraries.sh", ] for command in commands: print(f"Sending '{command}' to core instances...") command_id = ssm_client.send_command( InstanceIds=core_instance_ids, DocumentName="AWS-RunShellScript", Parameters={"commands": [command]}, TimeoutSeconds=3600, )["Command"]["CommandId"] while True: # Verify the previous step succeeded before running the next step. cmd_result = ssm_client.list_commands(CommandId=command_id)["Commands"][0] if cmd_result["StatusDetails"] == "Success": print(f"Command succeeded.") break elif cmd_result["StatusDetails"] in ["Pending", "InProgress"]: print(f"Command status is {cmd_result['StatusDetails']}, waiting...") time.sleep(10) else: print(f"Command status is {cmd_result['StatusDetails']}, quitting.") raise RuntimeError( f"Command {command} failed to run. " f"Details: {cmd_result['StatusDetails']}" ) def main(): parser = argparse.ArgumentParser() parser.add_argument("cluster_id", help="The ID of the cluster.") parser.add_argument("script_path", help="The path to the script in Amazon S3.") args = parser.parse_args() emr_client = boto3.client("emr") ssm_client = boto3.client("ssm") install_libraries_on_core_nodes( args.cluster_id, args.script_path, emr_client, ssm_client ) if __name__ == "__main__": main()
-
APIEinzelheiten finden Sie unter ListInstancesPython (Boto3) API -Referenz.AWS SDK
-