Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Verwenden Sie es IndexFaces
mit einem AWS SDK oder CLI
Die folgenden Codebeispiele zeigen, wie man es benutztIndexFaces
.
Weitere Informationen finden Sie unter Hinzufügen von Gesichtern zu einer Sammlung.
- .NET
-
- AWS SDK for .NET
-
Anmerkung
Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. using System; using System.Collections.Generic; using System.Threading.Tasks; using Amazon.Rekognition; using Amazon.Rekognition.Model; /// <summary> /// Uses the Amazon Rekognition Service to detect faces in an image /// that has been uploaded to an Amazon Simple Storage Service (Amazon S3) /// bucket and then adds the information to a collection. /// </summary> public class AddFaces { public static async Task Main() { string collectionId = "MyCollection2"; string bucket = "amzn-s3-demo-bucket"; string photo = "input.jpg"; var rekognitionClient = new AmazonRekognitionClient(); var image = new Image { S3Object = new S3Object { Bucket = bucket, Name = photo, }, }; var indexFacesRequest = new IndexFacesRequest { Image = image, CollectionId = collectionId, ExternalImageId = photo, DetectionAttributes = new List<string>() { "ALL" }, }; IndexFacesResponse indexFacesResponse = await rekognitionClient.IndexFacesAsync(indexFacesRequest); Console.WriteLine($"{photo} added"); foreach (FaceRecord faceRecord in indexFacesResponse.FaceRecords) { Console.WriteLine($"Face detected: Faceid is {faceRecord.Face.FaceId}"); } } }
-
APIEinzelheiten finden Sie IndexFacesunter AWS SDK for .NET APIReferenz.
-
- CLI
-
- AWS CLI
-
Um Gesichter zu einer Sammlung hinzuzufügen
Mit dem folgenden
index-faces
Befehl werden die in einem Bild gefundenen Gesichter zur angegebenen Sammlung hinzugefügt.aws rekognition index-faces \ --image '
{"S3Object":{"Bucket":"MyVideoS3Bucket","Name":"MyPicture.jpg"}}
' \ --collection-idMyCollection
\ --max-faces1
\ --quality-filter"AUTO"
\ --detection-attributes"ALL"
\ --external-image-id"MyPicture.jpg"
Ausgabe:
{ "FaceRecords": [ { "FaceDetail": { "Confidence": 99.993408203125, "Eyeglasses": { "Confidence": 99.11750030517578, "Value": false }, "Sunglasses": { "Confidence": 99.98249053955078, "Value": false }, "Gender": { "Confidence": 99.92769622802734, "Value": "Male" }, "Landmarks": [ { "Y": 0.26750367879867554, "X": 0.6202793717384338, "Type": "eyeLeft" }, { "Y": 0.26642778515815735, "X": 0.6787431836128235, "Type": "eyeRight" }, { "Y": 0.31361380219459534, "X": 0.6421601176261902, "Type": "nose" }, { "Y": 0.3495299220085144, "X": 0.6216195225715637, "Type": "mouthLeft" }, { "Y": 0.35194727778434753, "X": 0.669899046421051, "Type": "mouthRight" }, { "Y": 0.26844894886016846, "X": 0.6210268139839172, "Type": "leftPupil" }, { "Y": 0.26707562804222107, "X": 0.6817160844802856, "Type": "rightPupil" }, { "Y": 0.24834522604942322, "X": 0.6018546223640442, "Type": "leftEyeBrowLeft" }, { "Y": 0.24397172033786774, "X": 0.6172008514404297, "Type": "leftEyeBrowUp" }, { "Y": 0.24677404761314392, "X": 0.6339119076728821, "Type": "leftEyeBrowRight" }, { "Y": 0.24582654237747192, "X": 0.6619398593902588, "Type": "rightEyeBrowLeft" }, { "Y": 0.23973053693771362, "X": 0.6804757118225098, "Type": "rightEyeBrowUp" }, { "Y": 0.24441994726657867, "X": 0.6978968977928162, "Type": "rightEyeBrowRight" }, { "Y": 0.2695908546447754, "X": 0.6085202693939209, "Type": "leftEyeLeft" }, { "Y": 0.26716896891593933, "X": 0.6315826177597046, "Type": "leftEyeRight" }, { "Y": 0.26289820671081543, "X": 0.6202316880226135, "Type": "leftEyeUp" }, { "Y": 0.27123287320137024, "X": 0.6205548048019409, "Type": "leftEyeDown" }, { "Y": 0.2668408751487732, "X": 0.6663622260093689, "Type": "rightEyeLeft" }, { "Y": 0.26741549372673035, "X": 0.6910083889961243, "Type": "rightEyeRight" }, { "Y": 0.2614026665687561, "X": 0.6785826086997986, "Type": "rightEyeUp" }, { "Y": 0.27075251936912537, "X": 0.6789616942405701, "Type": "rightEyeDown" }, { "Y": 0.3211299479007721, "X": 0.6324167847633362, "Type": "noseLeft" }, { "Y": 0.32276326417922974, "X": 0.6558475494384766, "Type": "noseRight" }, { "Y": 0.34385165572166443, "X": 0.6444970965385437, "Type": "mouthUp" }, { "Y": 0.3671635091304779, "X": 0.6459195017814636, "Type": "mouthDown" } ], "Pose": { "Yaw": -9.54541015625, "Roll": -0.5709401965141296, "Pitch": 0.6045494675636292 }, "Emotions": [ { "Confidence": 39.90074157714844, "Type": "HAPPY" }, { "Confidence": 23.38753890991211, "Type": "CALM" }, { "Confidence": 5.840933322906494, "Type": "CONFUSED" } ], "AgeRange": { "High": 63, "Low": 45 }, "EyesOpen": { "Confidence": 99.80887603759766, "Value": true }, "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618015021085739, "Left": 0.5575000047683716, "Height": 0.24770642817020416 }, "Smile": { "Confidence": 99.69740295410156, "Value": false }, "MouthOpen": { "Confidence": 99.97393798828125, "Value": false }, "Quality": { "Sharpness": 95.54405975341797, "Brightness": 63.867706298828125 }, "Mustache": { "Confidence": 97.05007934570312, "Value": false }, "Beard": { "Confidence": 87.34505462646484, "Value": false } }, "Face": { "BoundingBox": { "Width": 0.18562500178813934, "Top": 0.1618015021085739, "Left": 0.5575000047683716, "Height": 0.24770642817020416 }, "FaceId": "ce7ed422-2132-4a11-ab14-06c5c410f29f", "ExternalImageId": "example-image.jpg", "Confidence": 99.993408203125, "ImageId": "8d67061e-90d2-598f-9fbd-29c8497039c0" } } ], "UnindexedFaces": [], "FaceModelVersion": "3.0", "OrientationCorrection": "ROTATE_0" }
Weitere Informationen finden Sie unter Gesichter zu einer Sammlung hinzufügen im Amazon Rekognition Developer Guide.
-
APIEinzelheiten finden Sie unter IndexFaces AWS CLI
Befehlsreferenz.
-
- Java
-
- SDKfür Java 2.x
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.IndexFacesResponse; import software.amazon.awssdk.services.rekognition.model.IndexFacesRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.QualityFilter; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceRecord; import software.amazon.awssdk.services.rekognition.model.UnindexedFace; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Reason; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class AddFacesToCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionName - The name of the collection. sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); addToCollection(rekClient, collectionId, sourceImage); rekClient.close(); } public static void addToCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); IndexFacesRequest facesRequest = IndexFacesRequest.builder() .collectionId(collectionId) .image(souImage) .maxFaces(1) .qualityFilter(QualityFilter.AUTO) .detectionAttributes(Attribute.DEFAULT) .build(); IndexFacesResponse facesResponse = rekClient.indexFaces(facesRequest); System.out.println("Results for the image"); System.out.println("\n Faces indexed:"); List<FaceRecord> faceRecords = facesResponse.faceRecords(); for (FaceRecord faceRecord : faceRecords) { System.out.println(" Face ID: " + faceRecord.face().faceId()); System.out.println(" Location:" + faceRecord.faceDetail().boundingBox().toString()); } List<UnindexedFace> unindexedFaces = facesResponse.unindexedFaces(); System.out.println("Faces not indexed:"); for (UnindexedFace unindexedFace : unindexedFaces) { System.out.println(" Location:" + unindexedFace.faceDetail().boundingBox().toString()); System.out.println(" Reasons:"); for (Reason reason : unindexedFace.reasons()) { System.out.println("Reason: " + reason); } } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
-
APIEinzelheiten finden Sie IndexFacesunter AWS SDK for Java 2.x APIReferenz.
-
- Kotlin
-
- SDKfür Kotlin
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. suspend fun addToCollection( collectionIdVal: String?, sourceImage: String, ) { val souImage = Image { bytes = (File(sourceImage).readBytes()) } val request = IndexFacesRequest { collectionId = collectionIdVal image = souImage maxFaces = 1 qualityFilter = QualityFilter.Auto detectionAttributes = listOf(Attribute.Default) } RekognitionClient { region = "us-east-1" }.use { rekClient -> val facesResponse = rekClient.indexFaces(request) // Display the results. println("Results for the image") println("\n Faces indexed:") facesResponse.faceRecords?.forEach { faceRecord -> println("Face ID: ${faceRecord.face?.faceId}") println("Location: ${faceRecord.faceDetail?.boundingBox}") } println("Faces not indexed:") facesResponse.unindexedFaces?.forEach { unindexedFace -> println("Location: ${unindexedFace.faceDetail?.boundingBox}") println("Reasons:") unindexedFace.reasons?.forEach { reason -> println("Reason: $reason") } } } }
-
APIEinzelheiten finden Sie IndexFaces
in der AWS SDKAPIKotlin-Referenz.
-
- Python
-
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository
einrichten und ausführen. class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def index_faces(self, image, max_faces): """ Finds faces in the specified image, indexes them, and stores them in the collection. :param image: The image to index. :param max_faces: The maximum number of faces to index. :return: A tuple. The first element is a list of indexed faces. The second element is a list of faces that couldn't be indexed. """ try: response = self.rekognition_client.index_faces( CollectionId=self.collection_id, Image=image.image, ExternalImageId=image.image_name, MaxFaces=max_faces, DetectionAttributes=["ALL"], ) indexed_faces = [ RekognitionFace({**face["Face"], **face["FaceDetail"]}) for face in response["FaceRecords"] ] unindexed_faces = [ RekognitionFace(face["FaceDetail"]) for face in response["UnindexedFaces"] ] logger.info( "Indexed %s faces in %s. Could not index %s faces.", len(indexed_faces), image.image_name, len(unindexed_faces), ) except ClientError: logger.exception("Couldn't index faces in image %s.", image.image_name) raise else: return indexed_faces, unindexed_faces
-
APIEinzelheiten finden Sie unter IndexFacesPython (Boto3) API -Referenz.AWS SDK
-