Verwenden Sie es DetectDocumentText mit einem AWS SDK oder CLI - AWS SDKCode-Beispiele

Weitere AWS SDK Beispiele sind im Repo AWS Doc SDK Examples GitHub verfügbar.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Verwenden Sie es DetectDocumentText mit einem AWS SDK oder CLI

Die folgenden Codebeispiele zeigen, wie man es benutztDetectDocumentText.

CLI
AWS CLI

Um Text in einem Dokument zu erkennen

detect-document-textDas folgende Beispiel zeigt, wie Text in einem Dokument erkannt wird.

Linux/macOS:

aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'

Windows:

aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name

Ausgabe:

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }

Weitere Informationen finden Sie unter Erkennen von Dokumenttext mit Amazon Textract im Amazon Textract Developers Guide.

Java
SDKfür Java 2.x
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

Erkennt Text aus einem Eingabedokument.

import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.textract.TextractClient; import software.amazon.awssdk.services.textract.model.Document; import software.amazon.awssdk.services.textract.model.DetectDocumentTextRequest; import software.amazon.awssdk.services.textract.model.DetectDocumentTextResponse; import software.amazon.awssdk.services.textract.model.Block; import software.amazon.awssdk.services.textract.model.DocumentMetadata; import software.amazon.awssdk.services.textract.model.TextractException; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectDocumentText { public static void main(String[] args) { final String usage = """ Usage: <sourceDoc>\s Where: sourceDoc - The path where the document is located (must be an image, for example, C:/AWS/book.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceDoc = args[0]; Region region = Region.US_EAST_2; TextractClient textractClient = TextractClient.builder() .region(region) .build(); detectDocText(textractClient, sourceDoc); textractClient.close(); } public static void detectDocText(TextractClient textractClient, String sourceDoc) { try { InputStream sourceStream = new FileInputStream(new File(sourceDoc)); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); // Get the input Document object as bytes. Document myDoc = Document.builder() .bytes(sourceBytes) .build(); DetectDocumentTextRequest detectDocumentTextRequest = DetectDocumentTextRequest.builder() .document(myDoc) .build(); // Invoke the Detect operation. DetectDocumentTextResponse textResponse = textractClient.detectDocumentText(detectDocumentTextRequest); List<Block> docInfo = textResponse.blocks(); for (Block block : docInfo) { System.out.println("The block type is " + block.blockType().toString()); } DocumentMetadata documentMetadata = textResponse.documentMetadata(); System.out.println("The number of pages in the document is " + documentMetadata.pages()); } catch (TextractException | FileNotFoundException e) { System.err.println(e.getMessage()); System.exit(1); } } }

Erkennt Text aus einem Dokument, das sich in einem Amazon S3 S3-Bucket befindet.

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.textract.model.S3Object; import software.amazon.awssdk.services.textract.TextractClient; import software.amazon.awssdk.services.textract.model.Document; import software.amazon.awssdk.services.textract.model.DetectDocumentTextRequest; import software.amazon.awssdk.services.textract.model.DetectDocumentTextResponse; import software.amazon.awssdk.services.textract.model.Block; import software.amazon.awssdk.services.textract.model.DocumentMetadata; import software.amazon.awssdk.services.textract.model.TextractException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectDocumentTextS3 { public static void main(String[] args) { final String usage = """ Usage: <bucketName> <docName>\s Where: bucketName - The name of the Amazon S3 bucket that contains the document.\s docName - The document name (must be an image, i.e., book.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0]; String docName = args[1]; Region region = Region.US_WEST_2; TextractClient textractClient = TextractClient.builder() .region(region) .build(); detectDocTextS3(textractClient, bucketName, docName); textractClient.close(); } public static void detectDocTextS3(TextractClient textractClient, String bucketName, String docName) { try { S3Object s3Object = S3Object.builder() .bucket(bucketName) .name(docName) .build(); // Create a Document object and reference the s3Object instance. Document myDoc = Document.builder() .s3Object(s3Object) .build(); DetectDocumentTextRequest detectDocumentTextRequest = DetectDocumentTextRequest.builder() .document(myDoc) .build(); DetectDocumentTextResponse textResponse = textractClient.detectDocumentText(detectDocumentTextRequest); for (Block block : textResponse.blocks()) { System.out.println("The block type is " + block.blockType().toString()); } DocumentMetadata documentMetadata = textResponse.documentMetadata(); System.out.println("The number of pages in the document is " + documentMetadata.pages()); } catch (TextractException e) { System.err.println(e.getMessage()); System.exit(1); } } }
Python
SDKfür Python (Boto3)
Anmerkung

Es gibt noch mehr dazu. GitHub Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

class TextractWrapper: """Encapsulates Textract functions.""" def __init__(self, textract_client, s3_resource, sqs_resource): """ :param textract_client: A Boto3 Textract client. :param s3_resource: A Boto3 Amazon S3 resource. :param sqs_resource: A Boto3 Amazon SQS resource. """ self.textract_client = textract_client self.s3_resource = s3_resource self.sqs_resource = sqs_resource def detect_file_text(self, *, document_file_name=None, document_bytes=None): """ Detects text elements in a local image file or from in-memory byte data. The image must be in PNG or JPG format. :param document_file_name: The name of a document image file. :param document_bytes: In-memory byte data of a document image. :return: The response from Amazon Textract, including a list of blocks that describe elements detected in the image. """ if document_file_name is not None: with open(document_file_name, "rb") as document_file: document_bytes = document_file.read() try: response = self.textract_client.detect_document_text( Document={"Bytes": document_bytes} ) logger.info("Detected %s blocks.", len(response["Blocks"])) except ClientError: logger.exception("Couldn't detect text.") raise else: return response
SAP ABAP
SDKfür SAP ABAP
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

"Detects text in the input document." "Amazon Textract can detect lines of text and the words that make up a line of text." "The input document must be in one of the following image formats: JPEG, PNG, PDF, or TIFF." "Create an ABAP object for the Amazon S3 object." DATA(lo_s3object) = NEW /aws1/cl_texs3object( iv_bucket = iv_s3bucket iv_name = iv_s3object ). "Create an ABAP object for the document." DATA(lo_document) = NEW /aws1/cl_texdocument( io_s3object = lo_s3object ). "Analyze document stored in Amazon S3." TRY. oo_result = lo_tex->detectdocumenttext( io_document = lo_document ). "oo_result is returned for testing purposes." LOOP AT oo_result->get_blocks( ) INTO DATA(lo_block). IF lo_block->get_text( ) = 'INGREDIENTS: POWDERED SUGAR* (CANE SUGAR,'. MESSAGE 'Found text in the doc: ' && lo_block->get_text( ) TYPE 'I'. ENDIF. ENDLOOP. DATA(lo_metadata) = oo_result->get_documentmetadata( ). MESSAGE 'The number of pages in the document is ' && lo_metadata->ask_pages( ) TYPE 'I'. MESSAGE 'Detect document text completed.' TYPE 'I'. CATCH /aws1/cx_texaccessdeniedex. MESSAGE 'You do not have permission to perform this action.' TYPE 'E'. CATCH /aws1/cx_texbaddocumentex. MESSAGE 'Amazon Textract is not able to read the document.' TYPE 'E'. CATCH /aws1/cx_texdocumenttoolargeex. MESSAGE 'The document is too large.' TYPE 'E'. CATCH /aws1/cx_texinternalservererr. MESSAGE 'Internal server error.' TYPE 'E'. CATCH /aws1/cx_texinvalidparameterex. MESSAGE 'Request has non-valid parameters.' TYPE 'E'. CATCH /aws1/cx_texinvalids3objectex. MESSAGE 'Amazon S3 object is not valid.' TYPE 'E'. CATCH /aws1/cx_texprovthruputexcdex. MESSAGE 'Provisioned throughput exceeded limit.' TYPE 'E'. CATCH /aws1/cx_texthrottlingex. MESSAGE 'The request processing exceeded the limit' TYPE 'E'. CATCH /aws1/cx_texunsupporteddocex. MESSAGE 'The document is not supported.' TYPE 'E'. ENDTRY.