Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Erkennen Sie Dokumentelemente mit Amazon Comprehend und einem AWS SDK
Wie das aussehen kann, sehen Sie am nachfolgenden Beispielcode:
Erkennen Sie Sprachen, Entitäten und Schlüsselausdrücke in einem Dokument.
Erkennt persönlich identifizierbare Informationen (PII) in einem Dokument.
Erkennt die Stimmung in einem Dokument.
Erkennt Syntaxelemente in einem Dokument.
- Python
-
- SDKfür Python (Boto3)
-
Anmerkung
Es gibt noch mehr dazu. GitHub Finden Sie das vollständige Beispiel und erfahren Sie, wie Sie es einrichten und ausführen in der AWS Repository mit Codebeispielen
. Erstellen Sie eine Klasse, die Amazon Comprehend Comprehend-Aktionen umschließt.
import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_languages(self, text): """ Detects languages used in a document. :param text: The document to inspect. :return: The list of languages along with their confidence scores. """ try: response = self.comprehend_client.detect_dominant_language(Text=text) languages = response["Languages"] logger.info("Detected %s languages.", len(languages)) except ClientError: logger.exception("Couldn't detect languages.") raise else: return languages def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities def detect_key_phrases(self, text, language_code): """ Detects key phrases in a document. A key phrase is typically a noun and its modifiers. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of key phrases along with their confidence scores. """ try: response = self.comprehend_client.detect_key_phrases( Text=text, LanguageCode=language_code ) phrases = response["KeyPhrases"] logger.info("Detected %s phrases.", len(phrases)) except ClientError: logger.exception("Couldn't detect phrases.") raise else: return phrases def detect_pii(self, text, language_code): """ Detects personally identifiable information (PII) in a document. PII can be things like names, account numbers, or addresses. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of PII entities along with their confidence scores. """ try: response = self.comprehend_client.detect_pii_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s PII entities.", len(entities)) except ClientError: logger.exception("Couldn't detect PII entities.") raise else: return entities def detect_sentiment(self, text, language_code): """ Detects the overall sentiment expressed in a document. Sentiment can be positive, negative, neutral, or a mixture. :param text: The document to inspect. :param language_code: The language of the document. :return: The sentiments along with their confidence scores. """ try: response = self.comprehend_client.detect_sentiment( Text=text, LanguageCode=language_code ) logger.info("Detected primary sentiment %s.", response["Sentiment"]) except ClientError: logger.exception("Couldn't detect sentiment.") raise else: return response def detect_syntax(self, text, language_code): """ Detects syntactical elements of a document. Syntax tokens are portions of text along with their use as parts of speech, such as nouns, verbs, and interjections. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of syntax tokens along with their confidence scores. """ try: response = self.comprehend_client.detect_syntax( Text=text, LanguageCode=language_code ) tokens = response["SyntaxTokens"] logger.info("Detected %s syntax tokens.", len(tokens)) except ClientError: logger.exception("Couldn't detect syntax.") raise else: return tokens
Rufen Sie Funktionen in der Wrapper-Klasse auf, um Entitäten, Phrasen und mehr in einem Dokument zu erkennen.
def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend detection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") comp_detect = ComprehendDetect(boto3.client("comprehend")) with open("detect_sample.txt") as sample_file: sample_text = sample_file.read() demo_size = 3 print("Sample text used for this demo:") print("-" * 88) print(sample_text) print("-" * 88) print("Detecting languages.") languages = comp_detect.detect_languages(sample_text) pprint(languages) lang_code = languages[0]["LanguageCode"] print("Detecting entities.") entities = comp_detect.detect_entities(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(entities[:demo_size]) print("Detecting key phrases.") phrases = comp_detect.detect_key_phrases(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(phrases[:demo_size]) print("Detecting personally identifiable information (PII).") pii_entities = comp_detect.detect_pii(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(pii_entities[:demo_size]) print("Detecting sentiment.") sentiment = comp_detect.detect_sentiment(sample_text, lang_code) print(f"Sentiment: {sentiment['Sentiment']}") print("SentimentScore:") pprint(sentiment["SentimentScore"]) print("Detecting syntax elements.") syntax_tokens = comp_detect.detect_syntax(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(syntax_tokens[:demo_size]) print("Thanks for watching!") print("-" * 88)
-
APIEinzelheiten finden Sie in den folgenden Themen unter AWS SDKfür Python (Boto3) API -Referenz.
-
Für eine vollständige Liste von AWS SDKEntwicklerhandbücher und Codebeispiele finden Sie unterAmazon Comprehend mit einem SDK verwenden AWS. Dieses Thema enthält auch Informationen zu den ersten Schritten und Details zu früheren SDK Versionen.