Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Maschinelles Lernen ohne Code mit Amazon Canvas SageMaker
Mit Amazon SageMaker Canvas können Sie Ihre eigenen KI/ML-Modelle erstellen, ohne eine einzige Codezeile schreiben zu müssen. Sie können ML-Modelle für gängige Anwendungsfälle wie Regression und Prognose erstellen und auf Fundamentmodelle (FMs) von Amazon Bedrock zugreifen und diese auswerten. Sie können auch FMs von Amazon aus auf public zugreifen, SageMaker JumpStart um Inhalte zu generieren, Text zu extrahieren und Text zusammenzufassen, um generative KI-Lösungen zu unterstützen.
Wie erstellt man ML-Modelle ohne Code mit Canvas SageMaker
Amazon DocumentDB ist jetzt in Amazon SageMaker Canvas integriert, um maschinelles Lernen (ML) ohne Code mit in Amazon DocumentDB gespeicherten Daten zu ermöglichen. Sie können jetzt ML-Modelle für Regressions- und Prognoseanforderungen erstellen und Basismodelle für die Zusammenfassung und Generierung von Inhalten verwenden, indem Sie in Amazon DocumentDB gespeicherte Daten verwenden, ohne eine einzige Codezeile schreiben zu müssen.
SageMaker Canvas bietet eine visuelle Oberfläche, über die Amazon DocumentDB-Kunden Prognosen erstellen können, ohne dass KI/ML-Kenntnisse erforderlich sind oder eine einzige Codezeile geschrieben werden muss. Kunden können jetzt den SageMaker Canvas-Workspace aus Amazon DocumentDB DocumentDB-Daten für die Datenvorbereitung und das Modelltraining starten, importieren und verknüpfen. AWS Management Console Daten in Amazon DocumentDB können jetzt in SageMaker Canvas verwendet werden, um Modelle zur Vorhersage der Kundenabwanderung, zur Aufdeckung von Betrug, zur Vorhersage von Wartungsausfällen, zur Prognose von Geschäftskennzahlen und zur Generierung von Inhalten zu erstellen und zu erweitern. Kunden können nun mithilfe der systemeigenen Integration von SageMaker Canvas mit Amazon QuickSight ML-gestützte Erkenntnisse veröffentlichen und teamübergreifend teilen. Datenerfassungspipelines in SageMaker Canvas werden standardmäßig auf sekundären Amazon DocumentDB DocumentDB-Instances ausgeführt, wodurch sichergestellt wird, dass die Leistung von Anwendungs- und SageMaker Canvas-Erfassungs-Workloads nicht beeinträchtigt wird.
Amazon DocumentDB-Kunden können mit SageMaker Canvas beginnen, indem sie zur neuen Amazon DocumentDB No-Code ML Console-Seite navigieren und sich mit neuen oder verfügbaren Canvas-Workspaces verbinden. SageMaker
Konfiguration der Domain und des Benutzerprofils SageMaker
Sie können von SageMaker Domänen aus, die im Modus VPC Nur ausgeführt werden, eine Verbindung zu Amazon DocumentDB-Clustern herstellen. Indem Sie eine SageMaker Domain in Ihrer startenVPC, können Sie den Datenfluss von Ihren SageMaker Studio- und Canvas-Umgebungen aus steuern. Auf diese Weise können Sie den Internetzugang einschränken, den Datenverkehr mithilfe standardmäßiger AWS Netzwerk- und Sicherheitsfunktionen überwachen und überprüfen und über VPC Endpunkte eine Verbindung zu anderen AWS Ressourcen herstellen. Informationen zur Erstellung Ihrer SageMaker Domain für die Verbindung mit Ihrem Amazon DocumentDB-Cluster finden Sie unter Amazon SageMaker SageMaker Canvas Getting started und Amazon Canvas in a VPC without internet access konfigurieren im Amazon SageMaker Developer Guide.
Konfiguration von IAM Zugriffsberechtigungen für Amazon DocumentDB und Canvas SageMaker
Ein Amazon DocumentDB DocumentDB-Benutzer, AmazonDocDBConsoleFullAccess
der seiner zugehörigen Rolle und Identität zugeordnet ist, kann auf die AWS Management Console zugreifen. Fügen Sie der oben genannten Rolle oder Identität die folgenden Aktionen hinzu, um Zugriff auf maschinelles Lernen ohne Code mit Amazon SageMaker Canvas zu gewähren.
"sagemaker:CreatePresignedDomainUrl", "sagemaker:DescribeDomain", "sagemaker:ListDomains", "sagemaker:ListUserProfiles"
Datenbankbenutzer und Rollen für SageMaker Canvas erstellen
Mit der rollenbasierten Zugriffskontrolle (RBAC) in Amazon DocumentDB können Sie den Zugriff auf die Aktionen einschränken, die Benutzer an Datenbanken ausführen können. RBACfunktioniert, indem einem Benutzer eine oder mehrere Rollen zugewiesen werden. Diese Rollen bestimmen die Operationen, die ein Benutzer mit Datenbankressourcen ausführen kann.
Als Canvas-Benutzer stellen Sie mit Benutzernamen und Passwort eine Verbindung zu einer Amazon DocumentDB DocumentDB-Datenbank her. Sie können mithilfe der Amazon DBB RBAC Document-Funktionalität einen Datenbankbenutzer/eine Datenbankrolle für einen Canvas-Benutzer erstellen, der Lesezugriff auf die jeweiligen Datenbanken hat.
Verwenden Sie zum Beispiel den createUser
Vorgang:
db.createUser({ user: "canvas_user", pwd: "<insert-password>", roles: [{role: "read", db: "sample-database-1"}] })
Dadurch wird eine erstelltcanvas_user
, die über Leseberechtigungen für die sample-database-1
Datenbank verfügt. Ihre Canvas-Analysten können diese Anmeldeinformationen verwenden, um auf Daten in Ihrem Amazon DocumentDB-Cluster zuzugreifen. Weitere Informationen finden Datenbankzugriff mithilfe der rollenbasierten Zugriffskontrolle Sie unter.
Verfügbare Regionen
Die No-Code-Integration ist in Regionen verfügbar, in denen sowohl Amazon DocumentDB als auch Amazon SageMaker Canvas unterstützt werden. Zu den Regionen gehören:
-
us-east-1 (N. Virginia)
-
us-east-2 (Ohio)
-
us-west-2 (Oregon)
-
ap-northeast-1 (Tokyo)
-
ap-northeast-2 (Seoul)
-
ap-south-1 (Mumbai)
-
ap-southeast-1 (Singapur)
-
ap-southeast-2 (Sydney)
-
eu-central-1 (Frankfurt)
-
eu-west-1 (Ireland)
Informationen zur aktuellen regionalen Verfügbarkeit finden Sie unter Amazon SageMaker Canvas im Amazon SageMaker Developer Guide.