Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Passagen werden abgerufen
Sie können das verwenden RetrieveAPI als Retriever für Retrieval Augmented Generation (RAG) -Systeme.
RAG-Systeme verwenden generative künstliche Intelligenz, um Anwendungen zur Beantwortung von Fragen zu erstellen. RAG-Systeme bestehen aus einem Retriever und großen Sprachmodellen (LLM). Bei einer Anfrage identifiziert der Retriever die relevantesten Textblöcke aus einem Korpus von Dokumenten und leitet sie an das LLM weiter, um die nützlichste Antwort zu erhalten. Anschließend analysiert das LLM die relevanten Textblöcke oder Passagen und generiert eine umfassende Antwort auf die Anfrage.
Die Retrieve
API betrachtet Textblöcke oder Auszüge, die als Passagen bezeichnet werden, und gibt die wichtigsten Passagen zurück, die für die Abfrage am relevantesten sind.
Wie die QueryAPI, die Retrieve
API sucht auch nach relevanten Informationen. Beim Informationsabruf der Retrieve API werden der Kontext der Anfrage und alle verfügbaren Informationen aus den indizierten Dokumenten berücksichtigt. Standardmäßig gibt die Query
API jedoch nur Auszüge von bis zu 100 Stichwörtern zurück. Mit der Retrieve
API können Sie längere Passagen mit bis zu 200 Token-Wörtern und bis zu 100 semantisch relevanten Passagen abrufen. Dies schließt keine Antworten vom Typ Frage-Antwort oder häufig gestellte Fragen aus Ihrem Index ein. Die Passagen, auch Chunks genannt, sind Textauszüge, die semantisch aus mehreren Dokumenten und mehreren Teilen desselben Dokuments extrahiert werden können. Der GenAI Enterprise Edition-Index von Kendra bietet hochgenaue Ergebnisse für den Abruf. Er verwendet eine hybride Suche über Vektor- und Schlüsselwortindizes sowie eine Rangfolge nach Deep-Learning-Modellen.
Mit der API können Sie auch Folgendes Retrieve
tun:
-
Überschreiben Sie das Boosting auf Indexebene
-
Filtern Sie auf der Grundlage von Dokumentfeldern oder Attributen
-
Filtern Sie basierend auf dem Benutzer- oder Gruppenzugriff auf Dokumente
-
Sehen Sie sich den Bereich mit dem Konfidenzwert für ein abgerufenes Passageergebnis an. Das Konfidenzfeld bietet eine relative Rangfolge, die angibt, wie sicher Amazon Kendra es ist, dass die Antwort für die Abfrage relevant ist.
Anmerkung
Buckets mit Konfidenzwerten sind derzeit nur für Englisch verfügbar.
Sie können der Antwort auch bestimmte Felder hinzufügen, die möglicherweise nützliche Zusatzinformationen enthalten.
Die Retrieve
API unterstützt derzeit die folgenden Funktionen nicht: Abfragen mit erweiterter Abfragesyntax, vorgeschlagene Rechtschreibkorrekturen für Abfragen, Facettierung, Abfragevorschläge zur automatischen Vervollständigung von Suchanfragen und inkrementelles Lernen. Abfragen zum Abrufen der API werden nicht im Analyse-Dashboard angezeigt.
Die Retrieve
API teilt sich die Anzahl der Abfragekapazitätseinheiten, die Sie für Ihren Index festgelegt haben. Weitere Informationen darüber, was in einer einzelnen Kapazitätseinheit enthalten ist, und zur Standard-Basiskapazität für einen Index finden Sie unter Kapazität anpassen.
Anmerkung
Sie können keine Kapazität hinzufügen, wenn Sie die Amazon Kendra Developer Edition verwenden. Sie können Kapazität nur hinzufügen, wenn Sie die Amazon Kendra Enterprise Edition verwenden. Weitere Informationen darüber, was in der Developer Edition und der Enterprise Edition enthalten ist, finden Sie unter Amazon Kendra Editionen.
Im Folgenden finden Sie ein Beispiel für die Verwendung der Retrieve
API, um die 100 relevantesten Passagen aus Dokumenten in einem Index für die Abfrage abzurufen "how does amazon kendra work?"