Hinweis zum Ende des Supports: Am 31. Oktober 2025 AWS wird der Support für Amazon Lookout for Vision eingestellt. Nach dem 31. Oktober 2025 können Sie nicht mehr auf die Lookout for Vision Vision-Konsole oder die Lookout for Vision Vision-Ressourcen zugreifen. Weitere Informationen finden Sie in diesem Blogbeitrag.
Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Definieren von JSON Linien für die Bildklassifizierung
Sie definieren eine JSON Zeile für jedes Bild, das Sie in einer Amazon Lookout for Vision Vision-Manifestdatei verwenden möchten. Wenn Sie ein Klassifizierungsmodell erstellen möchten, muss die JSON Zeile eine Bildklassifizierung enthalten, die entweder normal oder anomalisch ist. Eine JSON Zeile ist im Format SageMaker Ground Truth Classification Job Output. Eine Manifestdatei besteht aus einer oder mehreren JSON Zeilen, eine für jedes Bild, das Sie importieren möchten.
Um eine Manifestdatei für klassifizierte Bilder zu erstellen
-
Erstellen Sie eine leere Textdatei.
-
Fügen Sie für jedes Bild, das Sie importieren möchten, eine JSON Zeile hinzu. Jede JSON Zeile sollte etwa wie folgt aussehen:
{"source-ref":"s3://lookoutvision-console-us-east-1-nnnnnnnnnn/gt-job/manifest/IMG_1133.png","anomaly-label":1,"anomaly-label-metadata":{"confidence":0.95,"job-name":"labeling-job/testclconsolebucket","class-name":"normal","human-annotated":"yes","creation-date":"2020-04-15T20:17:23.433061","type":"groundtruth/image-classification"}}
-
Speichern Sie die Datei.
Anmerkung
Sie können die Erweiterung
.manifest
verwenden, sie ist jedoch nicht erforderlich. -
Erstellen Sie einen Datensatz mit der von Ihnen erstellten Manifestdatei. Weitere Informationen finden Sie unter Erstellen einer Manifestdatei.
JSONKlassifikationslinien
In diesem Abschnitt erfahren Sie, wie Sie eine JSON Linie erstellen, die ein Bild als normal oder anomal klassifiziert.
Linie für Anomalien JSON
Die folgende JSON Zeile zeigt ein Bild, das als Anomalie gekennzeichnet ist. Beachten Sie, dass der Wert von class-name
istanomaly
.
{ "source-ref": "s3: //bucket/image/anomaly/abnormal-1.jpg", "
anomaly-label
-metadata": { "confidence":1
, "job-name": "labeling-job/auto-label
", "class-name": "anomaly
", "human-annotated": "yes
", "creation-date": "2020-11-10T03:37:09.600
", "type": "groundtruth/image-classification" }, "anomaly-label
":1
}
Normale JSON Linie
Die folgende JSON Zeile zeigt ein Bild, das als normal beschriftet ist. Beachten Sie, dass der Wert von class-name
istnormal
.
{ "source-ref": "s3: //bucket/image/normal/2020-10-20_12-14-55_613.jpeg", "
anomaly-label
-metadata": { "confidence":1
, "job-name": "labeling-job/auto-label
", "class-name": "normal
", "human-annotated": "yes
", "creation-date": "2020-11-10T03:37:09.603
", "type": "groundtruth/image-classification" }, "anomaly-label
": 0 }
JSONZeilentasten und Werte
Die folgenden Informationen beschreiben die Schlüssel und Werte in einer Amazon Lookout for Vision JSON Vision-Produktlinie.
Quellennachweis
(Erforderlich) Der Amazon S3-Speicherort des Bildes. Das Format ist "s3://
. Bilder in einem importierten Datensatz müssen im gleichen Amazon-S3-Bucket gespeichert werden. BUCKET
/OBJECT_PATH
"
Bezeichnung „Anomalie“
(Erforderlich) Das Label-Attribut. Verwenden Sie den Schlüssel oder einen anderen Schlüsselnamenanomaly-label
, den Sie wählen. Der Schlüsselwert (0
im vorherigen Beispiel) wird von Amazon Lookout for Vision benötigt, aber nicht verwendet. Das von Amazon Lookout for Vision erstellte Ausgabemanifest konvertiert den Wert in 1
für ein ungewöhnliches Bild und einen Wert von 0
für ein normales Bild. Der Wert von class-name
bestimmt, ob das Bild normal oder ungewöhnlich ist.
Es müssen entsprechende Metadaten vorhanden sein, die durch den Feldnamen mit angehängtem -Metadaten identifiziert werden. Beispiel, "anomaly-label-metadata"
.
anomaly-label-metadata
(Erforderlich) Metadaten zum Label-Attribut. Der Feldname muss mit dem Label-Attribut identisch sein, wobei -Metadaten angehängt ist.
- Konfidenz
-
(Optional) Wird derzeit nicht von Amazon Lookout for Vision verwendet. Wenn Sie einen Wert angeben, verwenden Sie den Wert.
1
- Jobname
-
(Optional) Ein Name, den Sie für den Job wählen, der das Bild verarbeitet.
- Klassenname
-
(Erforderlich) Wenn das Bild normalen Inhalt enthält, geben Sie dies an
normal
, andernfalls geben Sie es ananomaly
. Wenn der Wert vonclass-name
ein anderer Wert ist, wird das Bild dem Datensatz als unbeschriftetes Bild hinzugefügt. Informationen zur Kennzeichnung eines Bilds finden Sie unterHinzufügen von Bildern zu Ihrem Datensatz. - Mit menschlichen Anmerkungen versehen
-
(Erforderlich) Geben Sie
"yes"
an, wenn die Anmerkung von einem Menschen ausgefüllt wurde. Andernfalls geben Sie"no"
an. - Erstellungsdatum
-
(OptionalUTC) Datum und Uhrzeit der Erstellung des Labels unter koordinierter Weltzeit ().
- Typ
-
(Erforderlich) Die Art der Verarbeitung, die auf das Bild angewendet werden soll. Für Bezeichnungen mit Anomalien auf Bildebene ist der Wert.
"groundtruth/image-classification"