Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
HRNN-Coldstart-Rezept (veraltet)
Anmerkung
Ältere HRNN-Rezepte sind nicht mehr verfügbar. Diese Dokumentation dient zu Referenzzwecken.
Wir empfehlen, das Rezept aws-user-personalizaton (Benutzerpersonalisierung) gegenüber den älteren HRNN-Rezepten zu verwenden. Die Benutzerpersonalisierung verbessert und vereinheitlicht die Funktionalität der HRNN-Rezepte. Weitere Informationen finden Sie unter Rezept für Benutzerpersonalisierung.
Verwenden Sie das HRNN-ColdStart-Rezept, um vorherzusagen, mit welchen Elementen ein Benutzer interagieren wird, wenn Sie häufig neue Elemente und Interaktionen hinzufügen, und Sie möchten sofort Empfehlungen für diese Elemente erhalten. Das HRNN-Kaltstartrezept ähnelt dem HRNN-Metadata-Rezept, aber es ermöglicht Ihnen, Empfehlungen aus neuen Elementen zu erhalten.
Darüber hinaus können Sie das HRNN-Coldstart-Rezept verwenden, wenn Sie es von Schulungselementen ausschließen möchten, die über eine lange Liste von Interaktionen verfügen, entweder aufgrund eines aktuellen Beliebtheitstrends oder weil die Interaktionen äußerst ungewöhnlich sind und zu Störungen bei der Schulung führen. Mit HRNN-Coldstart können Sie weniger relevante Elemente herausfiltern, um eine Teilmenge für die Schulung zu erstellen. Bei der Teilmenge der Elemente, den so genannten „kalten Elementen“, handelt es sich um Elemente, für die im Datensatz Artikelinteraktionen verwandte Interaktionsereignisse vorhanden sind. Ein Element wird als kaltes Element betrachtet, wenn Folgendes zutrifft:
-
Es hat weniger Interaktionen als eine angegebene Anzahl von maximalen Interaktionen. Sie geben diesen Wert im
cold_start_max_interactions
-Hyperparameter des Rezepts an. -
Es hat eine kürzere relative Dauer als die maximale Dauer. Sie geben diesen Wert im
cold_start_max_duration
-Hyperparameter des Rezepts an.
Um die Anzahl der Kaltelemente zu reduzieren, legen Sie einen niedrigeren Wert für cold_start_max_interactions
oder cold_start_max_duration
fest. Um die Anzahl der Kaltelemente zu erhöhen, legen Sie einen höheren Wert für cold_start_max_interactions
oder cold_start_max_duration
fest.
Beim HRNN-Kaltstart gelten folgende Limits für Kaltelemente:
-
Maximum cold start items
: 80.000 -
Minimum cold start items
: 100
Wenn die Anzahl der Kaltelemente außerhalb dieses Bereichs liegt, schlagen Versuche, eine Lösung zu erstellen, fehl.
Das HRNN-Kaltstartrezept hat die folgenden Eigenschaften:
-
Name (Name –
aws-hrnn-coldstart
-
Rezept Amazon-Ressourcenname (ARN) —
arn:aws:personalize:::recipe/aws-hrnn-coldstart
-
Algorithmus ARN —
arn:aws:personalize:::algorithm/aws-hrnn-coldstart
-
Merkmalstransformation ARN —
arn:aws:personalize:::feature-transformation/featurize_coldstart
-
Art des Rezepts —
USER_PERSONALIZATION
Weitere Informationen finden Sie unter Ein Rezept wählen.
In der folgenden Tabelle werden die Hyperparameter für das HRNN-Kaltstartrezept beschrieben. Ein Hyperparameter ist ein Algorithmusparameter, den Sie anpassen können, um die Modellleistung zu verbessern. Algorithmus-Hyperparameter steuern die Leistung des Modells. Hyperparameter zur Entwicklung von Funktionen steuern, wie die Daten für die Schulung gefiltert werden. Die Auswahl des besten Werts für einen Hyperparameter wird als Hyperparameteroptimierung (HPO) bezeichnet. Weitere Informationen finden Sie unter Hyperparameter und HPO.
Die Tabelle enthält auch die folgenden Informationen für jeden Hyperparameter:
-
Bereich: [Untergrenze, Obergrenze]
-
Werttyp: Ganzzahl, kontinuierlich (float), kategorisch (boolean, Liste, Zeichenfolge)
-
HPO optimierbar: Kann der Parameter an der Hyperparameteroptimierung (HPO) teilnehmen?
Name | Beschreibung |
---|---|
Hyperparameter des Algorithmus | |
hidden_dimension |
Anzahl der ausgeblendeten Variablen im Modell. Ausgeblendete Variablen erstellen die Kaufhistorie und Elementstatistiken der Benutzer neu, um die Rangfolge zu generieren. Geben Sie eine größere Anzahl ausgeblendeter Dimensionen an, wenn Ihr Datensatz für Artikelinteraktionen kompliziertere Muster enthält. Je mehr ausgeblendete Dimensionen verwendet werden, desto größer muss das Dataset sein und desto länger dauert die Verarbeitung. Bestimmen Sie den optimalen Wert mithilfe der HPO. Um HPO zu verwenden, legen Sie Standardwert Bereich: [32, 256] Werttyp: Ganzzahl HPO-optimierbar: Ja |
bptt |
Legt fest, ob die Technik „Backpropagation über Zeit“ verwendet werden soll. DieBackpropagation über Zeit ist eine Technik, die Gewichtungen in wiederkehrenden neuronalen netzwerkbasierten Algorithmen aktualisiert. Verwenden Sie Standardwert: 32 Bereich: [2, 32] Werttyp: Ganzzahl HPO-optimierbar: Ja |
recency_mask |
Legt fest, ob das Modell die neuesten Beliebtheitstrends im Datensatz Artikelinteraktionen berücksichtigen soll. Neueste Beliebtheitstrends können plötzliche Änderungen in den zugrunde liegenden Mustern von Interaktionsereignissen umfassen. Um ein Modell zu schulen, das aktuelle Ereignisse stärker gewichtet, legen Sie Standardwert: Bereich: Werttyp: Boolescher Wert HPO-optimierbar: Ja |
Hyperparameter zur Featureinstellung | |
cold_start_max_interactions |
Die maximale Anzahl von Benutzer-Element-Interaktionen, die ein Element als Kaltelement haben kann. Standardwert: 15 Bereich: Positive Ganzzahlen Werttyp: Ganzzahl HPO-optimierbar: Nein |
cold_start_max_duration |
Die maximale Dauer in Tagen relativ zum Ausgangspunkt einer Benutzer-Element-Interaktion, die als Kaltstartelement betrachtet wird. Um den Ausgangspunkt der Benutzer-Element-Interaktion festzulegen, legen Sie den Standardwert: 5.0 Bereich: Positive Gleitkommazahlen Werttyp: Gleitkommazahl HPO-optimierbar: Nein |
cold_start_relative_from |
Legt den Ausgangspunkt für das HRNN-Coldstart-Rezept fest, um Um Standardwert: Bereich: Werttyp: Zeichenfolge HPO-optimierbar: Nein |
min_user_history_length_percentile |
Das Mindestperzentil der Benutzerhistorienlängen, das in die Modellschulung einbezogen werden muss. Historienlänge ist die Gesamtmenge der Daten zu einem Benutzer. Verwenden Sie Wenn Sie beispielsweise Standardwert: 0.0 Bereich: [0,0, 1,0]. Werttyp: Gleitkommazahl HPO-optimierbar: Nein |
max_user_history_length_percentile |
Das maximale Perzentil der Benutzerhistorienlänge, das in die Modellschulung einbezogen werden kann. Historienlänge ist die Gesamtmenge der Daten zu einem Benutzer. Verwenden Sie Wenn Sie beispielsweise Standardwert: 0.99 Bereich: [0,0, 1,0]. Werttyp: Gleitkommazahl HPO-optimierbar: Nein |