Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Debuggen eines fehlgeschlagenen Modelltrainings
Beim Modelltraining können Fehler auftreten. Amazon Rekognition Custom Labels meldet Trainingsfehler in der Konsole und in der Antwort von. DescribeProjectVersions
Die Fehler sind entweder endgültig (Training kann nicht fortgesetzt werden) oder nicht endgültig (Training kann fortgesetzt werden). Bei Fehlern, die sich auf den Inhalt der Trainings- und Testdatensätze beziehen, können Sie die Validierungsergebnisse herunterladen (eine Manifestzusammenfassung und Validierungsmanifeste für Trainings und Tests). Weitere Informationen finden Sie in diesem Abschnitt anhand der Fehlercodes in den Validierungsergebnissen. Dieser Abschnitt enthält auch Informationen zu Manifestdateifehlern (endgültige Fehler, die auftreten, bevor der Inhalt der Manifestdatei überprüft wird).
Anmerkung
Ein Manifest ist die Datei, in der der Inhalt eines Datensatzes gespeichert wird.
Sie können einige Fehler mithilfe der Amazon Rekognition Custom Labels-Konsole beheben. Bei anderen Fehlern müssen Sie möglicherweise Aktualisierungen der Trainings- oder Testmanifestdateien vornehmen. Möglicherweise müssen Sie weitere Änderungen vornehmen, z. B. IAM Berechtigungen. Weitere Informationen finden Sie in der Dokumentation zu den einzelnen Fehlern.
Endgültige Fehler
Endgültige Fehler beenden das Training eines Modells. Es gibt drei Kategorien von endgültigen Fehlern während des Trainings: Dienstfehler, Manifest-Dateifehler und Manifest-Inhaltsfehler.
In der Konsole zeigt Amazon Rekognition Custom Labels endgültige Fehler für ein Modell in der Spalte Statusmeldung der Projektseite an. Das Projektmanagement-Dashboard zeigt eine Liste der Projekte mit Namen, Versionen, Erstellungsdatum, Modellleistung und Statusmeldungen, die den Modellstatus angeben, z. B. Schulung abgeschlossen oder nicht bestanden
Wenn Sie den verwenden AWS SDK, können Sie herausfinden, ob ein Fehler in der Terminal-Manifest-Datei oder ein Terminal-Manifest-Inhaltsfehler aufgetreten ist, indem Sie die Antwort von DescribeProjectVersionsüberprüfen. In diesem Fall lautet der Status
-Wert TRAINING_FAILED
und das StatusMessage
-Feld enthält den Fehler.
Dienstfehler
Endgültige Dienstfehler treten auf, wenn bei Amazon Rekognition ein Problem mit dem Dienst auftritt und das Training nicht fortgesetzt werden kann. Zum Beispiel der Ausfall eines anderen Dienstes, von dem Amazon Rekognition Custom Labels abhängt. Amazon Rekognition Custom Labels meldet Dienstfehler in der Konsole, da bei Amazon Rekognition ein Problem mit dem Dienst aufgetreten ist. Wenn Sie den verwenden AWS SDK, werden Servicefehler, die während des Trainings auftreten, InternalServerError
ausnahmsweise von CreateProjectVersionund DescribeProjectVersionsausgelöst.
Wenn ein Dienstfehler auftritt, versuchen Sie erneut, das Modell zu trainieren. Wenn die Schulung weiterhin fehlschlägt, wenden Sie sich an den AWSSupport
Liste der Fehler in der Terminal-Manifestdatei
Manifest-Dateifehler sind endgültige Fehler in den Trainings- und Testdatensätzen, die auf Dateiebene oder in mehreren Dateien auftreten. Manifest-Dateifehler werden erkannt, bevor der Inhalt der Trainings- und Testdatensätze validiert wird. Manifest-Dateifehler verhindern die Meldung von nicht endgültigen Validierungsfehlern. Beispielsweise generiert eine leere Trainingsmanifestdatei den Fehler Die Manifestdatei ist leer. Da die Datei leer ist, können keine Fehler bei der Überprüfung der JSON Terminalzeile gemeldet werden. Die Manifestzusammenfassung wird ebenfalls nicht erstellt.
Sie müssen Fehler in der Manifestdatei beheben, bevor Sie Ihr Modell trainieren können.
Im Folgenden werden die Manifest-Dateifehler aufgeführt.
Liste der Fehler beim Inhalt des Terminal-Manifests
Manifest-Inhaltsfehler sind endgültige Fehler, die sich auf den Inhalt eines Manifests beziehen. Wenn Sie beispielsweise den Fehler Die Manifestdatei enthält nicht genügend beschriftete Bilder pro Label für die automatische Aufteilung erhalten, kann das Training nicht abgeschlossen werden, da der Trainingsdatensatz nicht genügend beschriftete Bilder enthält, um einen Testdatensatz zu erstellen.
Der Fehler wird nicht nur in der Konsole und in der Antwort von DescribeProjectVersions
gemeldet, sondern auch in der Manifest-Zusammenfassung zusammen mit allen anderen endgültigen Manifest-Inhaltsfehlern gemeldet. Weitere Informationen finden Sie unter Die Manifestzusammenfassung verstehen.
Fehler, die nicht an der JSON Terminalleitung liegen, werden auch in separaten Manifesten für die Ergebnisse von Schulungen und Tests aufgeführt. Die von Amazon Rekognition Custom Labels gefundenen JSON Nicht-Terminal-Zeilenfehler stehen nicht unbedingt im Zusammenhang mit den offensichtlichen Inhaltsfehlern, die das Training beenden. Weitere Informationen finden Sie unter Die Manifeste mit Validierungsergebnissen von Trainings und Tests verstehen.
Sie müssen Manifest-Inhaltsfehler beheben, bevor Sie Ihr Modell trainieren können.
Im Folgenden finden Sie die Fehlermeldungen für Manifest-Inhaltsfehler.
Liste der Fehler bei der Überprüfung von Nichtterminalleitungen JSON
JSONBei Zeilenvalidierungsfehlern handelt es sich nicht um terminale Fehler, bei denen Amazon Rekognition Custom Labels das Training eines Modells nicht beenden muss.
JSONFehler bei der Zeilenvalidierung werden in der Konsole nicht angezeigt.
In den Trainings- und Testdatensätzen steht eine JSON Linie für die Trainings- oder Testinformationen für ein einzelnes Bild. Validierungsfehler in einer JSON Linie, wie z. B. ein ungültiges Bild, werden in den Trainings- und Testvalidierungsmanifesten gemeldet. Amazon Rekognition Custom Labels schließt die Schulung mit den anderen gültigen JSON Zeilen ab, die im Manifest enthalten sind. Weitere Informationen finden Sie unter Die Manifeste mit Validierungsergebnissen von Trainings und Tests verstehen. Weitere Informationen über die Validierungsregeln finden Sie unter Validierungsregeln für Manifestdateien.
Anmerkung
Das Training schlägt fehl, wenn zu viele JSON Zeilenfehler vorliegen.
Wir empfehlen Ihnen, auch Fehler mit nicht terminalen JSON Linienfehlern zu beheben, da diese möglicherweise zu future Fehlern führen oder Ihr Modelltraining beeinträchtigen können.
Amazon Rekognition Custom Labels kann die folgenden Fehler bei der Überprüfung der JSON Terminalleitung hervorrufen.