Suche nach Gesichtern in gespeicherten Videos - Amazon Rekognition

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Suche nach Gesichtern in gespeicherten Videos

Sie können eine Sammlung nach Gesichtern durchsuchen, die auf Gesichter von Personen in einem gespeicherten Video oder einem Streaming-Video passen. Dieser Abschnitt behandelt die Suche nach Gesichtern in einem gespeicherten Video. Weitere Informationen zum Suchen von Gesichtern in einem Streaming-Video finden Sie unter Arbeiten mit Streaming-Videoereignissen.

Die Gesichter, nach denen Sie suchen, müssen zuerst mithilfe IndexFacesvon in einer Sammlung indexiert werden. Weitere Informationen finden Sie unter Hinzufügen von Gesichtern zu einer Sammlung.

Die Amazon-Rekognition-Video-Gesichtssuche folgt demselben asynchronen Arbeitsablauf wie andere Amazon-Rekognition-Video-Operationen, die in einem Amazon-S3-Bucket gespeicherte Videos analysieren. Um mit der Suche nach Gesichtern in einem gespeicherten Video zu beginnen, rufen Sie an StartFaceSearchund geben Sie die ID der Sammlung an, nach der Sie suchen möchten. Amazon Rekognition Video veröffentlicht den Abschlussstatus der Videoanalyse zu einem Amazon Simple Notification Service (AmazonSNS) -Thema. Wenn die Videoanalyse erfolgreich ist, rufen Sie an, GetFaceSearchum die Suchergebnisse zu erhalten. Weitere Informationen zum Starten der Videoanalyse und zum Abrufen der Ergebnisse finden Sie unter Amazon-Rekognition-Video-Operationen aufrufen.

Die folgende Prozedur zeigt, wie eine Sammlung nach Gesichtern durchsucht wird, die den Gesichtern von in einem Video erkannten Personen entsprechen. Die Prozedur zeigt auch, wie Sie die Tracking-Daten für Personen erhalten, die im Video gefunden wurden. Das Verfahren erweitert den Code inAnalysieren eines in einem Amazon S3 S3-Bucket gespeicherten Videos mit Java oder Python (SDK), der eine Amazon Simple Queue Service (AmazonSQS) -Warteschlange verwendet, um den Abschlussstatus einer Videoanalyseanfrage abzurufen.

Um ein Video nach passenden Gesichtern zu durchsuchen (SDK)
  1. Erstellen Sie eine Sammlung.

  2. Indizieren Sie ein Gesicht in der Sammlung.

  3. Führen Sie Analysieren eines in einem Amazon S3 S3-Bucket gespeicherten Videos mit Java oder Python (SDK) aus.

  4. Fügen Sie den folgenden Code in der Klasse VideoDetect ein, die Sie in Schritt 3 erstellt haben.

    Java
    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) //Face collection search in video ================================================================== private static void StartFaceSearchCollection(String bucket, String video, String collection) throws Exception{ NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartFaceSearchRequest req = new StartFaceSearchRequest() .withCollectionId(collection) .withVideo(new Video() .withS3Object(new S3Object() .withBucket(bucket) .withName(video))) .withNotificationChannel(channel); StartFaceSearchResult startPersonCollectionSearchResult = rek.startFaceSearch(req); startJobId=startPersonCollectionSearchResult.getJobId(); } //Face collection search in video ================================================================== private static void GetFaceSearchCollectionResults() throws Exception{ GetFaceSearchResult faceSearchResult=null; int maxResults=10; String paginationToken=null; do { if (faceSearchResult !=null){ paginationToken = faceSearchResult.getNextToken(); } faceSearchResult = rek.getFaceSearch( new GetFaceSearchRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken) .withSortBy(FaceSearchSortBy.TIMESTAMP) ); VideoMetadata videoMetaData=faceSearchResult.getVideoMetadata(); System.out.println("Format: " + videoMetaData.getFormat()); System.out.println("Codec: " + videoMetaData.getCodec()); System.out.println("Duration: " + videoMetaData.getDurationMillis()); System.out.println("FrameRate: " + videoMetaData.getFrameRate()); System.out.println(); //Show search results List<PersonMatch> matches= faceSearchResult.getPersons(); for (PersonMatch match: matches) { long milliSeconds=match.getTimestamp(); System.out.print("Timestamp: " + Long.toString(milliSeconds)); System.out.println(" Person number: " + match.getPerson().getIndex()); List <FaceMatch> faceMatches = match.getFaceMatches(); if (faceMatches != null) { System.out.println("Matches in collection..."); for (FaceMatch faceMatch: faceMatches){ Face face=faceMatch.getFace(); System.out.println("Face Id: "+ face.getFaceId()); System.out.println("Similarity: " + faceMatch.getSimilarity().toString()); System.out.println(); } } System.out.println(); } System.out.println(); } while (faceSearchResult !=null && faceSearchResult.getNextToken() != null); }

    Ersetzen Sie in der Funktion main die folgenden Zeilen:

    StartLabelDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetLabelDetectionResults();

    mit:

    String collection="collection"; StartFaceSearchCollection(bucket, video, collection); if (GetSQSMessageSuccess()==true) GetFaceSearchCollectionResults();
    Java V2

    Dieser Code stammt aus dem GitHub Repository mit AWS SDK Dokumentationsbeispielen. Das vollständige Beispiel finden Sie hier.

    import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectFaces { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startFaceDetection(rekClient, channel, bucket, video); getFaceResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startFaceDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartFaceDetectionRequest faceDetectionRequest = StartFaceDetectionRequest.builder() .jobTag("Faces") .faceAttributes(FaceAttributes.ALL) .notificationChannel(channel) .video(vidOb) .build(); StartFaceDetectionResponse startLabelDetectionResult = rekClient.startFaceDetection(faceDetectionRequest); startJobId = startLabelDetectionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getFaceResults(RekognitionClient rekClient) { try { String paginationToken = null; GetFaceDetectionResponse faceDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (faceDetectionResponse != null) paginationToken = faceDetectionResponse.nextToken(); GetFaceDetectionRequest recognitionRequest = GetFaceDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { faceDetectionResponse = rekClient.getFaceDetection(recognitionRequest); status = faceDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = faceDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); // Show face information. List<FaceDetection> faces = faceDetectionResponse.faces(); for (FaceDetection face : faces) { String age = face.face().ageRange().toString(); String smile = face.face().smile().toString(); System.out.println("The detected face is estimated to be" + age + " years old."); System.out.println("There is a smile : " + smile); } } while (faceDetectionResponse != null && faceDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
    Python
    #Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. #PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) # ============== Face Search =============== def StartFaceSearchCollection(self,collection): response = self.rek.start_face_search(Video={'S3Object':{'Bucket':self.bucket,'Name':self.video}}, CollectionId=collection, NotificationChannel={'RoleArn':self.roleArn, 'SNSTopicArn':self.snsTopicArn}) self.startJobId=response['JobId'] print('Start Job Id: ' + self.startJobId) def GetFaceSearchCollectionResults(self): maxResults = 10 paginationToken = '' finished = False while finished == False: response = self.rek.get_face_search(JobId=self.startJobId, MaxResults=maxResults, NextToken=paginationToken) print(response['VideoMetadata']['Codec']) print(str(response['VideoMetadata']['DurationMillis'])) print(response['VideoMetadata']['Format']) print(response['VideoMetadata']['FrameRate']) for personMatch in response['Persons']: print('Person Index: ' + str(personMatch['Person']['Index'])) print('Timestamp: ' + str(personMatch['Timestamp'])) if ('FaceMatches' in personMatch): for faceMatch in personMatch['FaceMatches']: print('Face ID: ' + faceMatch['Face']['FaceId']) print('Similarity: ' + str(faceMatch['Similarity'])) print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True print()

    Ersetzen Sie in der Funktion main die folgenden Zeilen:

    analyzer.StartLabelDetection() if analyzer.GetSQSMessageSuccess()==True: analyzer.GetLabelDetectionResults()

    mit:

    collection='tests' analyzer.StartFaceSearchCollection(collection) if analyzer.GetSQSMessageSuccess()==True: analyzer.GetFaceSearchCollectionResults()

    Wenn Sie zusätzlich zu Analysieren eines in einem Amazon S3 S3-Bucket gespeicherten Videos mit Java oder Python (SDK) bereits ein anderes Videobeispiel ausgeführt haben, ist der zu ersetzende Code möglicherweise anders.

  5. Ändern Sie den Wert von collection in den Namen der Sammlung, die Sie in Schritt 1 erstellt haben.

  6. Führen Sie den Code aus. Es wird eine Liste der Personen im Video angezeigt, deren Gesichter mit denen in der Eingabesammlung übereinstimmen. Zusätzlich werden die Tracking-Daten für jede gefundene Person angezeigt.

GetFaceSearch Antwort auf den Vorgang

Im Folgenden finden Sie ein Beispiel für eine JSON Antwort vonGetFaceSearch.

Die Antwort enthält ein Array von im Video erkannten Personen (Persons), deren Gesichter mit einem Gesicht in der Eingabesammlung übereinstimmen. Ein Array-Element PersonMatch,, existiert für jedes Mal, wenn die Person im Video gefunden wird. Jedes PersonMatch enthält eine Reihe von Übereinstimmungen mit Gesichtern aus der Eingabesammlung FaceMatch, Informationen über die zugeordnete Person und die Uhrzeit PersonDetail, zu der die Person im Video zugeordnet wurde.

{ "JobStatus": "SUCCEEDED", "NextToken": "IJdbzkZfvBRqj8GPV82BPiZKkLOGCqDIsNZG/gQsEE5faTVK9JHOz/xxxxxxxxxxxxxxx", "Persons": [ { "FaceMatches": [ { "Face": { "BoundingBox": { "Height": 0.527472972869873, "Left": 0.33530598878860474, "Top": 0.2161169946193695, "Width": 0.35503000020980835 }, "Confidence": 99.90239715576172, "ExternalImageId": "image.PNG", "FaceId": "a2f2e224-bfaa-456c-b360-7c00241e5e2d", "ImageId": "eb57ed44-8d8d-5ec5-90b8-6d190daff4c3" }, "Similarity": 98.40909576416016 } ], "Person": { "BoundingBox": { "Height": 0.8694444298744202, "Left": 0.2473958283662796, "Top": 0.10092592239379883, "Width": 0.49427083134651184 }, "Face": { "BoundingBox": { "Height": 0.23000000417232513, "Left": 0.42500001192092896, "Top": 0.16333332657814026, "Width": 0.12937499582767487 }, "Confidence": 99.97504425048828, "Landmarks": [ { "Type": "eyeLeft", "X": 0.46415066719055176, "Y": 0.2572723925113678 }, { "Type": "eyeRight", "X": 0.5068183541297913, "Y": 0.23705792427062988 }, { "Type": "nose", "X": 0.49765899777412415, "Y": 0.28383663296699524 }, { "Type": "mouthLeft", "X": 0.487221896648407, "Y": 0.3452930748462677 }, { "Type": "mouthRight", "X": 0.5142884850502014, "Y": 0.33167609572410583 } ], "Pose": { "Pitch": 15.966927528381348, "Roll": -15.547388076782227, "Yaw": 11.34195613861084 }, "Quality": { "Brightness": 44.80223083496094, "Sharpness": 99.95819854736328 } }, "Index": 0 }, "Timestamp": 0 }, { "Person": { "BoundingBox": { "Height": 0.2177777737379074, "Left": 0.7593749761581421, "Top": 0.13333334028720856, "Width": 0.12250000238418579 }, "Face": { "BoundingBox": { "Height": 0.2177777737379074, "Left": 0.7593749761581421, "Top": 0.13333334028720856, "Width": 0.12250000238418579 }, "Confidence": 99.63436889648438, "Landmarks": [ { "Type": "eyeLeft", "X": 0.8005779385566711, "Y": 0.20915353298187256 }, { "Type": "eyeRight", "X": 0.8391435146331787, "Y": 0.21049551665782928 }, { "Type": "nose", "X": 0.8191410899162292, "Y": 0.2523227035999298 }, { "Type": "mouthLeft", "X": 0.8093273043632507, "Y": 0.29053622484207153 }, { "Type": "mouthRight", "X": 0.8366993069648743, "Y": 0.29101791977882385 } ], "Pose": { "Pitch": 3.165884017944336, "Roll": 1.4182015657424927, "Yaw": -11.151537895202637 }, "Quality": { "Brightness": 28.910892486572266, "Sharpness": 97.61507415771484 } }, "Index": 1 }, "Timestamp": 0 }, { "Person": { "BoundingBox": { "Height": 0.8388888835906982, "Left": 0, "Top": 0.15833333134651184, "Width": 0.2369791716337204 }, "Face": { "BoundingBox": { "Height": 0.20000000298023224, "Left": 0.029999999329447746, "Top": 0.2199999988079071, "Width": 0.11249999701976776 }, "Confidence": 99.85971069335938, "Landmarks": [ { "Type": "eyeLeft", "X": 0.06842322647571564, "Y": 0.3010137975215912 }, { "Type": "eyeRight", "X": 0.10543643683195114, "Y": 0.29697132110595703 }, { "Type": "nose", "X": 0.09569807350635529, "Y": 0.33701086044311523 }, { "Type": "mouthLeft", "X": 0.0732642263174057, "Y": 0.3757539987564087 }, { "Type": "mouthRight", "X": 0.10589495301246643, "Y": 0.3722417950630188 } ], "Pose": { "Pitch": -0.5589138865470886, "Roll": -5.1093974113464355, "Yaw": 18.69594955444336 }, "Quality": { "Brightness": 43.052337646484375, "Sharpness": 99.68138885498047 } }, "Index": 2 }, "Timestamp": 0 }...... ], "VideoMetadata": { "Codec": "h264", "DurationMillis": 67301, "Format": "QuickTime / MOV", "FrameHeight": 1080, "FrameRate": 29.970029830932617, "FrameWidth": 1920 } }