Write a Spark application
Spark$SPARK_HOME/examples
and at GitHub
Scala
To avoid Scala compatibility issues, we suggest you use Spark dependencies for the
correct Scala version when you compile a Spark application for an Amazon EMR cluster. The
Scala version you should use depends on the version of Spark installed on your
cluster. For example, Amazon EMR release 5.30.1 uses Spark 2.4.5, which is built with
Scala 2.11. If your cluster uses Amazon EMR release 5.30.1, use Spark dependencies for
Scala 2.11. For more information about the Scala versions used by Spark, see the
Apache Spark
documentation
package org.apache.spark.examples import scala.math.random import org.apache.spark._ /** Computes an approximation to pi */ object SparkPi { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Spark Pi") val spark = new SparkContext(conf) val slices = if (args.length > 0) args(0).toInt else 2 val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow val count = spark.parallelize(1 until n, slices).map { i => val x = random * 2 - 1 val y = random * 2 - 1 if (x*x + y*y < 1) 1 else 0 }.reduce(_ + _) println("Pi is roughly " + 4.0 * count / n) spark.stop() } }
Java
package org.apache.spark.examples; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.Function2; import java.util.ArrayList; import java.util.List; /** * Computes an approximation to pi * Usage: JavaSparkPi [slices] */ public final class JavaSparkPi { public static void main(String[] args) throws Exception { SparkConf sparkConf = new SparkConf().setAppName("JavaSparkPi"); JavaSparkContext jsc = new JavaSparkContext(sparkConf); int slices = (args.length == 1) ? Integer.parseInt(args[0]) : 2; int n = 100000 * slices; List<Integer> l = new ArrayList<Integer>(n); for (int i = 0; i < n; i++) { l.add(i); } JavaRDD<Integer> dataSet = jsc.parallelize(l, slices); int count = dataSet.map(new Function<Integer, Integer>() { @Override public Integer call(Integer integer) { double x = Math.random() * 2 - 1; double y = Math.random() * 2 - 1; return (x * x + y * y < 1) ? 1 : 0; } }).reduce(new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer integer, Integer integer2) { return integer + integer2; } }); System.out.println("Pi is roughly " + 4.0 * count / n); jsc.stop(); } }
Python
import argparse import logging from operator import add from random import random from pyspark.sql import SparkSession logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") def calculate_pi(partitions, output_uri): """ Calculates pi by testing a large number of random numbers against a unit circle inscribed inside a square. The trials are partitioned so they can be run in parallel on cluster instances. :param partitions: The number of partitions to use for the calculation. :param output_uri: The URI where the output is written, typically an Amazon S3 bucket, such as 's3://example-bucket/pi-calc'. """ def calculate_hit(_): x = random() * 2 - 1 y = random() * 2 - 1 return 1 if x**2 + y**2 < 1 else 0 tries = 100000 * partitions logger.info( "Calculating pi with a total of %s tries in %s partitions.", tries, partitions ) with SparkSession.builder.appName("My PyPi").getOrCreate() as spark: hits = ( spark.sparkContext.parallelize(range(tries), partitions) .map(calculate_hit) .reduce(add) ) pi = 4.0 * hits / tries logger.info("%s tries and %s hits gives pi estimate of %s.", tries, hits, pi) if output_uri is not None: df = spark.createDataFrame([(tries, hits, pi)], ["tries", "hits", "pi"]) df.write.mode("overwrite").json(output_uri) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--partitions", default=2, type=int, help="The number of parallel partitions to use when calculating pi.", ) parser.add_argument( "--output_uri", help="The URI where output is saved, typically an S3 bucket." ) args = parser.parse_args() calculate_pi(args.partitions, args.output_uri)