Image Classification - TensorFlow Hyperparameters
Hyperparameters are parameters that are set before a machine learning model begins learning. The following hyperparameters are supported by the Amazon SageMaker AI built-in Image Classification - TensorFlow algorithm. See Tune an Image Classification - TensorFlow model for information on hyperparameter tuning.
Parameter Name | Description |
---|---|
augmentation |
Set to Valid values: string, either: ( Default value: |
augmentation_random_flip |
Indicates which flip mode to use for data augmentation when
Valid values: string, any of the following:
( Default value: |
augmentation_random_rotation |
Indicates how much rotation to use for data augmentation when
Valid values: float, range: [ Default value: |
augmentation_random_zoom |
Indicates how much vertical zoom to use for data augmentation when
Valid values: float, range: [ Default value: |
batch_size |
The batch size for training. For training on instances with multiple GPUs, this batch size is used across the GPUs. Valid values: positive integer. Default value: |
beta_1 |
The beta1 for the Valid values: float, range: [ Default value: |
beta_2 |
The beta2 for the Valid values: float, range: [ Default value: |
binary_mode |
When Valid values: string, either: ( Default value: |
dropout_rate |
The dropout rate for the dropout layer in the top classification layer. Valid values: float, range: [ Default value: |
early_stopping |
Set to Valid values: string, either: ( Default value: |
early_stopping_min_delta |
The minimum change needed to qualify as an improvement. An absolute
change less than the value of early_stopping_min_delta does not
qualify as improvement. Used only when early_stopping is
set to "True" .Valid values: float, range:
[ Default value:
|
early_stopping_patience |
The number of epochs to continue training with no improvement.
Used only when Valid values: positive integer. Default value: |
epochs |
The number of training epochs. Valid values: positive integer. Default value: |
epsilon |
The epsilon for Valid values: float, range: [ Default value: |
eval_metric |
If Valid values: string, any of the following:
( Default value: |
image_resize_interpolation |
Indicates interpolation method used when resizing images. For more
information, see image.resize Valid values: string, any of the following:
( Default value: |
initial_accumulator_value |
The starting value for the accumulators, or the per-parameter
momentum values, for the Valid values: float, range: [ Default value: |
label_smoothing |
Indicates how much to relax the confidence on label values. For
example, if Valid values: float, range: [ Default value: |
learning_rate |
The optimizer learning rate. Valid values: float, range:
[ Default value:
|
momentum |
The momentum for Valid values: float, range: [ Default value: |
optimizer |
The optimizer type. For more information, see Optimizers Valid values: string, any of the following: ( Default value: |
regularizers_l2 |
The L2 regularization factor for the dense layer in the classification layer. Valid values: float, range: [ Default value: |
reinitialize_top_layer |
If set to Valid values: string, any of the following: ( Default value: |
rho |
The discounting factor for the gradient of the
Valid values: float, range: [ Default value: |
train_only_top_layer |
If Valid values: string, either: ( Default value: |