Apply a scaling policy - Amazon SageMaker AI

Apply a scaling policy

After you register your model and define a scaling policy, apply the scaling policy to the registered model. This section shows how to apply a scaling policy using the the AWS Command Line Interface (AWS CLI) or the Application Auto Scaling API.

Apply a target tracking scaling policy (AWS CLI)

To apply a scaling policy to your model, use the put-scaling-policy AWS CLI command with the following parameters:

  • --policy-name—The name of the scaling policy.

  • --policy-type—Set this value to TargetTrackingScaling.

  • --resource-id—The resource identifier for the variant. For this parameter, the resource type is endpoint and the unique identifier is the name of the variant. For example, endpoint/my-endpoint/variant/my-variant.

  • --service-namespace—Set this value to sagemaker.

  • --scalable-dimension—Set this value to sagemaker:variant:DesiredInstanceCount.

  • --target-tracking-scaling-policy-configuration—The target-tracking scaling policy configuration to use for the model.

The following example applies a target tracking scaling policy named my-scaling-policy to a variant named my-variant, running on the my-endpoint endpoint. For the --target-tracking-scaling-policy-configuration option, specify the config.json file that you created previously.

aws application-autoscaling put-scaling-policy \ --policy-name my-scaling-policy \ --policy-type TargetTrackingScaling \ --resource-id endpoint/my-endpoint/variant/my-variant \ --service-namespace sagemaker \ --scalable-dimension sagemaker:variant:DesiredInstanceCount \ --target-tracking-scaling-policy-configuration file://config.json

Apply a scaling policy (Application Auto Scaling API)

To apply a scaling policy to a variant with the Application Auto Scaling API, use the PutScalingPolicy Application Auto Scaling API action with the following parameters:

  • PolicyName—The name of the scaling policy.

  • ServiceNamespace—Set this value to sagemaker.

  • ResourceID—The resource identifier for the variant. For this parameter, the resource type is endpoint and the unique identifier is the name of the variant. For example, endpoint/my-endpoint/variant/my-variant.

  • ScalableDimension—Set this value to sagemaker:variant:DesiredInstanceCount.

  • PolicyType—Set this value to TargetTrackingScaling.

  • TargetTrackingScalingPolicyConfiguration—The target-tracking scaling policy configuration to use for the variant.

The following example applies a target tracking scaling policy named my-scaling-policy to a variant named my-variant, running on the my-endpoint endpoint. The policy configuration keeps the average invocations per instance at 70.

POST / HTTP/1.1 Host: application-autoscaling.us-east-2.amazonaws.com Accept-Encoding: identity X-Amz-Target: AnyScaleFrontendService. X-Amz-Date: 20230506T182145Z User-Agent: aws-cli/2.0.0 Python/3.7.5 Windows/10 botocore/2.0.0dev4 Content-Type: application/x-amz-json-1.1 Authorization: AUTHPARAMS { "PolicyName": "my-scaling-policy", "ServiceNamespace": "sagemaker", "ResourceId": "endpoint/my-endpoint/variant/my-variant", "ScalableDimension": "sagemaker:variant:DesiredInstanceCount", "PolicyType": "TargetTrackingScaling", "TargetTrackingScalingPolicyConfiguration": { "TargetValue": 70.0, "PredefinedMetricSpecification": { "PredefinedMetricType": "SageMakerVariantInvocationsPerInstance" } } }