Code example using HuggingFaceProcessor in the Amazon SageMaker Python SDK
Hugging Face is an open-source provider of natural language processing (NLP) models.
The HuggingFaceProcessor
in the Amazon SageMaker Python SDK provides you with the ability to run processing jobs with
Hugging Face scripts. When you use the HuggingFaceProcessor
, you can leverage an Amazon-built Docker container
with a managed Hugging Face environment so that you don't need to bring your own container.
The following code example shows how you can use the HuggingFaceProcessor
to run your Processing job using a
Docker image provided and maintained by SageMaker AI. Note that when you run the job, you can specify a directory containing your scripts
and dependencies in the source_dir
argument, and you can have a requirements.txt
file located
inside your source_dir
directory that specifies the dependencies for your processing script(s). SageMaker Processing installs the
dependencies in requirements.txt
in the container for you.
from sagemaker.huggingface import HuggingFaceProcessor from sagemaker.processing import ProcessingInput, ProcessingOutput from sagemaker import get_execution_role #Initialize the HuggingFaceProcessor hfp = HuggingFaceProcessor( role=get_execution_role(), instance_count=1, instance_type='ml.g4dn.xlarge', transformers_version='4.4.2', pytorch_version='1.6.0', base_job_name='frameworkprocessor-hf' ) #Run the processing job hfp.run( code='
processing-script.py
', source_dir='scripts
', inputs=[ ProcessingInput( input_name='data', source=f's3://{BUCKET}/{S3_INPUT_PATH}
', destination='/opt/ml/processing/input/data/' ) ], outputs=[ ProcessingOutput(output_name='train', source='/opt/ml/processing/output/train/', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}
'), ProcessingOutput(output_name='test', source='/opt/ml/processing/output/test/', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}
'), ProcessingOutput(output_name='val', source='/opt/ml/processing/output/val/', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}
') ] )
If you have a requirements.txt
file, it should be a list of libraries you want
to install in the container. The path for source_dir
can be a relative, absolute, or
Amazon S3 URI path. However, if you use an Amazon S3 URI, then it must point to a tar.gz file. You can have
multiple scripts in the directory you specify for source_dir
. To learn more about
the HuggingFaceProcessor
class, see Hugging Face Estimator