Provide users with access to custom images
This documentation provides step-by-step instructions to provide your users with access to custom images within their JupyterLab environments. You can use the information on this page to create custom environments for your user’s workflows. The process involves utilizing:
-
Docker
-
AWS Command Line Interface
-
Amazon Elastic Container Registry
-
Amazon SageMaker AI AWS Management Console
After following the guidance on this page, JupyterLab users on the Amazon SageMaker AI domain will have access to the custom image and environment from their Jupyter spaces to empower their machine learning workflows.
Important
This page assumes that you have the AWS Command Line Interface and Docker installed on your local machine.
To have your users successfully run their image within JupyterLab, you must do the following:
To have your users successfully run the image
-
Create the Dockerfile
-
Build the image from the Dockerfile
-
Upload the image to Amazon Elastic Container Registry
-
Attach the image to you Amazon SageMaker AI domain
-
Have your users access the image from your JupyterLab space
Step 1: Create the Dockerfile
Create a Dockerfile to define the steps needed to create the environment needed to run the application in your users' containers.
Important
Your Dockerfile must meet the specifications provided in Dockerfile specifications.
Use the following Dockerfile template to create an Amazon Linux 2 image:
FROM public.ecr.aws/amazonlinux/amazonlinux:2 ARG NB_USER="sagemaker-user" ARG NB_UID="1000" ARG NB_GID="100" RUN yum install --assumeyes python3 shadow-utils && \ useradd --create-home --shell /bin/bash --gid "${NB_GID}" --uid ${NB_UID} ${NB_USER} && \ yum clean all && \ python3 -m pip install jupyterlab RUN python3 -m pip install --upgrade pip RUN python3 -m pip install --upgrade urllib3==1.26.6 USER ${NB_UID} CMD jupyter lab --ip 0.0.0.0 --port 8888 \ --ServerApp.base_url="/jupyterlab/default" \ --ServerApp.token='' \ --ServerApp.allow_origin='*'
Use the following Dockerfile template to create an Amazon SageMaker Distribution Image:
FROM public.ecr.aws/sagemaker/sagemaker-distribution:latest-cpu ARG NB_USER="sagemaker-user" ARG NB_UID=1000 ARG NB_GID=100 ENV MAMBA_USER=$NB_USER USER root RUN apt-get update RUN micromamba install sagemaker-inference --freeze-installed --yes --channel conda-forge --name base USER $MAMBA_USER ENTRYPOINT ["jupyter-lab"] CMD ["--ServerApp.ip=0.0.0.0", "--ServerApp.port=8888", "--ServerApp.allow_origin=*", "--ServerApp.token=''", "--ServerApp.base_url=/jupyterlab/default"]
Step 2: Build the Dockerfile
In the same directory as your Dockerfile, build your image using the following command:
docker build -t username/imagename:tag your-account-id.dkr.ecr.
AWS Region
.amazonaws.com/your-repository-name
:tag
Important
Your image must be tagged in the following format:
123456789012
.dkr.ecr.your-region.amazonaws.com/your-repository-name
:tag
You won’t be able to push it to an Amazon Elastic Container Registry repository otherwise.
Step 3: Push the image to the Amazon Elastic Container Registry repository
After you’ve built your image, log in to your Amazon ECR repository using the following command:
aws ecr get-login-password --region
AWS Region
| docker login --username AWS --password-stdin123456789012
.dkr.ecr.AWS Region
.amazonaws.com
After you’ve logged in, push your Dockerfile using the following command:
docker push
123456789012
.dkr.ecr.AWS Region
.amazonaws.com/your-repository-name
:tag
Step 4: Attach image to the Amazon SageMaker AI domain of your users
Important
Custom IAM policies that allow Studio users to create spaces must also
grant permissions to list images (sagemaker: ListImage
) to view
custom images. To add the permission, see
Add or remove identity permissions
in the AWS Identity and Access Management User
Guide.
AWS managed policies for Amazon SageMaker AI that give permissions to create SageMaker AI resources already include permissions to list images while creating those resources.
After you’ve pushed the image, you must access it from your Amazon SageMaker AI domain. Use the following procedure to attach the image to a SageMaker AI domain:
-
Open the SageMaker AI console
. -
Under Admin configurations, choose domains.
-
From the list of domains, select a domain.
-
Open the Environment tab.
-
For Custom images for personal Studio apps, choose Attach image.
-
Specify the image source.
-
Choose Next.
-
Choose Submit.
Your users can now select the image that you’ve attached to their Domain from their JupyterLab space.