Text Classification - TensorFlow Hyperparameters
Hyperparameters are parameters that are set before a machine learning model begins learning. The following hyperparameters are supported by the Amazon SageMaker AI built-in Object Detection - TensorFlow algorithm. See Tune a Text Classification - TensorFlow model for information on hyperparameter tuning.
Parameter Name | Description |
---|---|
batch_size |
The batch size for training. For training on instances with multiple GPUs, this batch size is used across the GPUs. Valid values: positive integer. Default value: |
beta_1 |
The beta1 for the Valid values: float, range: [ Default value: |
beta_2 |
The beta2 for the Valid values: float, range: [ Default value: |
dropout_rate |
The dropout rate for the dropout layer in the top classification layer. Used only when
Valid values: float, range: [ Default value: |
early_stopping |
Set to Valid values: string, either: ( Default value: |
early_stopping_min_delta |
The minimum change needed to qualify as an improvement. An absolute
change less than the value of early_stopping_min_delta does
not qualify as improvement. Used only when early_stopping
is set to "True" .Valid values: float, range:
[ Default value:
|
early_stopping_patience |
The number of epochs to continue training with no improvement.
Used only when Valid values: positive integer. Default value: |
epochs |
The number of training epochs. Valid values: positive integer. Default value: |
epsilon |
The epsilon for Valid values: float, range: [ Default value: |
initial_accumulator_value |
The starting value for the accumulators, or the per-parameter
momentum values, for the Valid values: float, range: [ Default value: |
learning_rate |
The optimizer learning rate. Valid values: float, range:
[ Default value:
|
momentum |
The momentum for the Valid values: float, range: [ Default value: |
optimizer |
The optimizer type. For more information, see Optimizers Valid values: string, any of the following: ( Default value: |
regularizers_l2 |
The L2 regularization factor for the dense layer in the
classification layer. Used only when
Valid values: float, range: [ Default value: |
reinitialize_top_layer |
If set to Valid values: string, any of the following: ( Default value: |
rho |
The discounting factor for the gradient of the
Valid values: float, range: [ Default value: |
train_only_on_top_layer |
If Valid values: string, either: ( Default value: |
validation_split_ratio |
The fraction of training data to randomly split to create
validation data. Only used if validation data is not provided
through the Valid values: float, range: [ Default value: |
warmup_steps_fraction |
The fraction of the total number of gradient update steps, where
the learning rate increases from 0 to the initial learning rate as a
warm up. Only used with the Valid values: float, range: [ Default value: |