Run a Processing Job with Apache Spark
Apache Spark is a unified analytics engine for large-scale data processing. Amazon SageMaker AI provides prebuilt Docker images that include Apache Spark and other dependencies needed to run distributed data processing jobs. The following provides an example on how to run a Amazon SageMaker Processing job using Apache Spark.
With the Amazon SageMaker Python SDK
A code repository that contains the source code and Dockerfiles for the
Spark images is available on GitHub
You can use the sagemaker.spark.PySparkProcessor
sagemaker.spark.SparkJarProcessor
The following code example shows how to run a processing job that invokes
your PySpark script preprocess.py
.
from sagemaker.spark.processing import PySparkProcessor spark_processor = PySparkProcessor( base_job_name="spark-preprocessor", framework_version="2.4", role=role, instance_count=2, instance_type="ml.m5.xlarge", max_runtime_in_seconds=1200, ) spark_processor.run( submit_app="preprocess.py", arguments=['s3_input_bucket', bucket, 's3_input_key_prefix', input_prefix, 's3_output_bucket', bucket, 's3_output_key_prefix', output_prefix] )
For an in-depth look, see the Distributed Data Processing with Apache Spark and
SageMaker Processing
example notebook
If you are not using the Amazon SageMaker AI
Python SDK
To learn more about using the SageMaker Python SDK with Processing containers,
see Amazon SageMaker AI Python
SDK