Keep data in a target table updated with AWS Glue and Athena
This sample project demonstrates how to query a target table to get current data with AWS Glue Catalog, then update it with new data from other sources using Amazon Athena.
In this project, the Step Functions state machine calls AWS Glue Catalog to verify if a target table exists in an Amazon S3 Bucket. If no table is found one, it will create a new table. Then, Step Functions runs an Athena query to add rows to the target table from a different data source: first querying the target table to get the most recent date, then querying the source table for more recent data and inserting it into the target table.
Step 1: Create the state machine
-
Open the Step Functions console
and choose Create state machine. -
Find and choose the starter template you want to work with. Choose Next to continue.
-
Choose Run a demo to create a read-only and ready-to-deploy workflow, or choose Build on it to create an editable state machine definition that you can build on and later deploy.
-
Choose Use template to continue with your selection.
Next steps depend on your previous choice:
-
Run a demo – You can review the state machine before you create a read-only project with resources deployed by AWS CloudFormation to your AWS account.
You can view the state machine definition, and when you are ready, choose Deploy and run to deploy the project and create the resources.
Deploying can take up to 10 minutes to create resources and permissions. You can use the Stack ID link to monitor progress in AWS CloudFormation.
After deploy completes, you should see your new state machine in the console.
-
Build on it – You can review and edit the workflow definition. You might need to set values for placeholders in the sample project before attemping to run your custom workflow.
Note
Standard charges might apply for services deployed to your account.
Step 2: Run the state machine
On the State machines page, choose your sample project.
On the sample project page, choose Start execution.
In the Start execution dialog box, do the following:
-
(Optional) Enter a custom execution name to override the generated default.
Non-ASCII names and logging
Step Functions accepts names for state machines, executions, activities, and labels that contain non-ASCII characters. Because such characters will not work with Amazon CloudWatch, we recommend using only ASCII characters so you can track metrics in CloudWatch.
-
(Optional) In the Input box, enter input values as JSON. You can skip this step if you are running a demo.
-
Choose Start execution.
The Step Functions console will direct you to an Execution Details page where you can choose states in the Graph view to explore related information in the Step details pane.
-
Congratulations!
You should now have either a running demo or a state machine definition that you can customize.