AWS::Bedrock::KnowledgeBase
Specifies a knowledge base as a resource in a top-level template. Minimally, you must specify the following properties:
-
Name – Specify a name for the knowledge base.
-
RoleArn – Specify the Amazon Resource Name (ARN) of the IAM role with permissions to invoke API operations on the knowledge base. For more information, see Create a service role for Knowledge base for Amazon Bedrock.
-
KnowledgeBaseConfiguration – Specify the embeddings configuration of the knowledge base. The following sub-properties are required:
-
Type – Specify the value
VECTOR
.
-
-
StorageConfiguration – Specify information about the vector store in which the data source is stored. The following sub-properties are required:
-
Type – Specify the vector store service that you are using.
Note
Redis Enterprise Cloud vector stores are currently unsupported in AWS CloudFormation.
-
For more information about using knowledge bases in Amazon Bedrock, see Knowledge base for Amazon Bedrock.
See the Properties section below for descriptions of both the required and optional properties.
Syntax
To declare this entity in your AWS CloudFormation template, use the following syntax:
JSON
{ "Type" : "AWS::Bedrock::KnowledgeBase", "Properties" : { "Description" :
String
, "KnowledgeBaseConfiguration" :KnowledgeBaseConfiguration
, "Name" :String
, "RoleArn" :String
, "StorageConfiguration" :StorageConfiguration
, "Tags" :{
} }Key
:Value
, ...}
YAML
Type: AWS::Bedrock::KnowledgeBase Properties: Description:
String
KnowledgeBaseConfiguration:KnowledgeBaseConfiguration
Name:String
RoleArn:String
StorageConfiguration:StorageConfiguration
Tags:
Key
:Value
Properties
Description
-
The description of the knowledge base associated with the inline agent.
Required: No
Type: String
Minimum:
1
Maximum:
200
Update requires: No interruption
KnowledgeBaseConfiguration
-
Contains details about the embeddings configuration of the knowledge base.
Required: Yes
Type: KnowledgeBaseConfiguration
Update requires: Replacement
Name
-
The name of the knowledge base.
Required: Yes
Type: String
Pattern:
^([0-9a-zA-Z][_-]?){1,100}$
Update requires: No interruption
RoleArn
-
The Amazon Resource Name (ARN) of the IAM role with permissions to invoke API operations on the knowledge base.
Required: Yes
Type: String
Pattern:
^arn:aws(-[^:]+)?:iam::([0-9]{12})?:role/.+$
Maximum:
2048
Update requires: No interruption
StorageConfiguration
-
Contains details about the storage configuration of the knowledge base.
Required: No
Type: StorageConfiguration
Update requires: Replacement
-
Metadata that you can assign to a resource as key-value pairs. For more information, see the following resources:
Required: No
Type: Object of String
Pattern:
^[a-zA-Z0-9\s._:/=+@-]*$
Minimum:
0
Maximum:
256
Update requires: No interruption
Return values
Ref
When you pass the logical ID of this resource to the intrinsic Ref
function, Ref
returns the knowledge base ID.
For example, { "Ref": "myKnowledgeBase" }
could return the value "KB12345678"
.
For more information about using the Ref
function, see Ref
.
Fn::GetAtt
The Fn::GetAtt
intrinsic function returns a value for a specified attribute of this type. The following are the available attributes and sample return values.
For more information about using the Fn::GetAtt
intrinsic function, see Fn::GetAtt
.
CreatedAt
-
The time the knowledge base was created.
FailureReasons
-
A list of reasons that the API operation on the knowledge base failed.
KnowledgeBaseArn
-
The Amazon Resource Name (ARN) of the knowledge base.
KnowledgeBaseId
-
The unique identifier for a knowledge base associated with the inline agent.
Status
-
The status of the knowledge base.
UpdatedAt
-
The time the knowledge base was last updated.
Examples
The following examples provide example templates for creating knowledge bases in different vector stores.
Note
Redis Enterprise Cloud vector stores are currently unsupported in AWS CloudFormation.
Create a knowledge base in an Amazon OpenSearch Serverless vector collection.
The following example creates a knowledge base in a vector index within an Amazon OpenSearch Serverless vector collection.
YAML
AWSTemplateFormatVersion: "2010-09-09" Description: A sample template for Knowledge base with Amazon Opensearch Serverless vector database. Parameters: KnowledgeBaseName: Type: String Description: The name of the knowledge base. KnowledgeBaseDescription: Type: String Description: The description of the knowledge base. DataSourceName: Type: String Description: The name of the data source. DataSourceDescription: Type: String Description: The description of the data source. Resources: KnowledgeBaseWithAoss: Type: AWS::Bedrock::KnowledgeBase Properties: Name: !Ref KnowledgeBaseName Description: !Ref KnowledgeBaseDescription RoleArn: "arn:aws:iam::123456789012:role/cfn-local-test-role" KnowledgeBaseConfiguration: Type: "VECTOR" VectorKnowledgeBaseConfiguration: EmbeddingModelArn: !Sub "arn:${AWS::Partition}:bedrock:${AWS::Region}::foundation-model/amazon.titan-embed-text-v1" StorageConfiguration: Type: "OPENSEARCH_SERVERLESS" OpensearchServerlessConfiguration: CollectionArn: "arn:aws:aoss:us-west-2:123456789012:collection/abcdefghij1234567890" VectorIndexName: "cfn-test-index" FieldMapping: VectorField: "cfn-test-vector-field" TextField: "text" MetadataField: "metadata" SampleDataSource: Type: AWS::Bedrock::DataSource Properties: KnowledgeBaseId: !Ref KnowledgeBaseWithAoss Name: !Ref DataSourceName Description: !Ref DataSourceDescription DataSourceConfiguration: Type: "S3" S3Configuration: BucketArn: "arn:aws:s3:::kb-test-aws" InclusionPrefixes: ["aws-overview.pdf"]
JSON
{ "AWSTemplateFormatVersion": "2010-09-09", "Parameters": { "KnowledgeBaseName": { "Description": "The name of the knowledge base.", "Type": "String" }, "KnowledgeBaseDescription": { "Description": "The description of the knowledge base.", "Type": "String" }, "DataSourceName": { "Description": "The name of the data source.", "Type": "String" }, "DataSourceDescription": { "Description": "The description of the data source.", "Type": "String" } }, "Resources": { "KnowledgeBaseWithAoss": { "Type": "AWS::Bedrock::KnowledgeBase", "Properties": { "Name": { "Ref": "KnowledgeBaseName" }, "Description": { "Ref": "KnowledgeBaseDescription" }, "RoleArn": "arn:aws:iam::123456789012:role/cfn-local-test-role", "KnowledgeBaseConfiguration": { "Type": "VECTOR", "VectorKnowledgeBaseConfiguration": { "EmbeddingModelArn": { "Fn::Sub": "arn:${AWS::Partition}:bedrock:${AWS::Region}::foundation-model/amazon.titan-embed-text-v1" } } }, "StorageConfiguration": { "Type": "OPENSEARCH_SERVERLESS", "OpensearchServerlessConfiguration": { "CollectionArn": "arn:aws:aoss:us-west-2:123456789012:collection/abcdefghij1234567890", "VectorIndexName": "cfn-test-index", "FieldMapping": { "VectorField": "cfn-test-vector-field", "TextField": "text", "MetadataField": "metadata" } } } } }, "SampleDataSource": { "Type": "AWS::Bedrock::DataSource", "Properties": { "KnowledgeBaseId": { "Ref": "KnowledgeBaseWithAoss" }, "Name": { "Ref": "DataSourceName" }, "Description": { "Ref": "DataSourceDescription" }, "DataSourceConfiguration": { "Type": "S3", "S3Configuration": { "BucketArn": "arn:aws:s3:::kb-test-aws", "InclusionPrefixes": ["aws-overview.pdf"] } } } } } }
Create a knowledge base in an Amazon Aurora database cluster.
The following example creates a knowledge base in a vector index within an Amazon Aurora database cluster.
YAML
AWSTemplateFormatVersion: "2010-09-09" Description: A sample template for Knowledge base with RDS vector database. Parameters: KnowledgeBaseName: Type: String Description: The name of the knowledge base. KnolwedgeBaseDescription: Type: String Description: The description of the knowledge base. DataSourceName: Type: String Description: The name of the data source. DataSourceDescription: Type: String Description: The description of the data source. Resources: KnowledgeBaseWithRDS: Type: AWS::Bedrock::KnowledgeBase Properties: Name: !Ref KnowledgeBaseName Description: !Ref KnolwedgeBaseDescription RoleArn: "arn:aws:iam::123456789012:role/cfn-local-test-role" KnowledgeBaseConfiguration: Type: "VECTOR" VectorKnowledgeBaseConfiguration: EmbeddingModelArn: !Sub "arn:${AWS::Partition}:bedrock:${AWS::Region}::foundation-model/amazon.titan-embed-text-v1" StorageConfiguration: Type: "RDS" RdsConfiguration: ResourceArn: !Sub "arn:${AWS::Partition}:rds:${AWS::Region}:${AWS::AccountId}:cluster:ct-kb-cluster" CredentialsSecretArn: !Sub "arn:aws:secretsmanager:${AWS::Region}:${AWS::AccountId}:secret:rds!cluster-4f5961a1-ebd5-4887-818f-0f902e945e04-eFxmC6" DatabaseName: "postgres" TableName: "bedrock_integration.bedrock_kb" FieldMapping: VectorField: "embedding" TextField: "chunks" MetadataField: "metadata" PrimaryKeyField: "id" SampleDataSource: Type: AWS::Bedrock::DataSource Properties: KnowledgeBaseId: !Ref KnowledgeBaseWithRDS Name: !Ref DataSourceName Description: !Ref DataSourceDescription DataSourceConfiguration: Type: "S3" S3Configuration: BucketArn: "arn:aws:s3:::kb-test-aws" InclusionPrefixes: ["aws-overview.pdf"]
JSON
{ "AWSTemplateFormatVersion": "2010-09-09", "Parameters": { "KnowledgeBaseName": { "Description": "The name of the knowledge base.", "Type": "String" }, "KnolwedgeBaseDescription": { "Description": "The description of the knowledge base.", "Type": "String" }, "DataSourceName": { "Description": "The name of the data source.", "Type": "String" }, "DataSourceDescription": { "Description": "The description of the data source.", "Type": "String" } }, "Resources": { "KnowledgeBaseWithRds": { "Type": "AWS::Bedrock::KnowledgeBase", "Properties": { "Name": { "Ref": "KnowledgeBaseName" }, "Description": { "Ref": "KnolwedgeBaseDescription" }, "RoleArn": "arn:aws:iam::123456789012:role/cfn-local-test-role", "KnowledgeBaseConfiguration": { "Type": "VECTOR", "VectorKnowledgeBaseConfiguration": { "EmbeddingModelArn": { "Fn::Sub": "arn:${AWS::Partition}:bedrock:${AWS::Region}::foundation-model/amazon.titan-embed-text-v1" } } }, "StorageConfiguration": { "Type": "RDS", "RdsConfiguration": { "ResourceArn": { "Fn::Sub": "arn:${AWS::Partition}:rds:${AWS::Region}:${AWS::AccountId}:cluster:knowledgebase-cluster" }, "CredentialsSecretArn": { "Fn::Sub": "arn:${AWS::Partition}:secretsmanager:${AWS::Region}:${AWS::AccountId}:secret:rds!cluster-4f5961a1-ebd5-4887-818f-0f902e945e04-eFxmC6" }, "DatabaseName": "postgres", "TableName": "bedrock_integration.bedrock_kb", "FieldMapping": { "VectorField": "vectorKey", "TextField": "text", "MetadataField": "metadata", "PrimaryKeyField": "id" } } } } }, "SampleDataSource": { "Type": "AWS::Bedrock::DataSource", "Properties": { "KnowledgeBaseId": { "Ref": "KnowledgeBaseWithRds" }, "Name": { "Ref": "DataSourceName" }, "Description": { "Ref": "DataSourceDescription" }, "DataSourceConfiguration": { "Type": "S3", "S3Configuration": { "BucketArn": "arn:aws:s3:::kb-test-aws", "InclusionPrefixes": ["aws-overview.pdf"] } } } } } }
Create a knowledge base in a Pinecone index.
The following example creates a knowledge base in a Pinecone index.
YAML
AWSTemplateFormatVersion: "2010-09-09" Description: A sample template for Knowledge base with Pinecone vector database. Parameters: KnowledgeBaseName: Type: String Description: The name of the knowledge base. KnowledgeBaseDescription: Type: String Description: The description of the knowledge base. DataSourceName: Type: String Description: The name of the data source. DataSourceDescription: Type: String Description: The description of the data source. Resources: KnowledgeBaseWithPinecone: Type: AWS::Bedrock::KnowledgeBase Properties: Name: !Ref KnowledgeBaseName Description: !Ref KnowledgeBaseDescription RoleArn: "arn:aws:iam::123456789012:role/cfn-local-test-role" KnowledgeBaseConfiguration: Type: "VECTOR" VectorKnowledgeBaseConfiguration: EmbeddingModelArn: !Sub "arn:${AWS::Partition}:bedrock:${AWS::Region}::foundation-model/amazon.titan-embed-text-v1" StorageConfiguration: Type: "PINECONE" PineconeConfiguration: ConnectionString: "https://xxxx.pinecone.io>" CredentialsSecretArn: "arn:aws:secretsmanager:us-west-2:123456789012:secret:pinecone-secret-abc123" Namespace: "kb-namespace" FieldMapping: TextField: "text" MetadataField: "metadata" SampleDataSource: Type: AWS::Bedrock::DataSource Properties: KnowledgeBaseId: !Ref KnowledgeBaseWithPinecone Name: !Ref DataSourceName Description: !Ref DataSourceDescription DataSourceConfiguration: Type: "S3" S3Configuration: BucketArn: "arn:aws:s3:::kb-test-aws" InclusionPrefixes: ["aws-overview.pdf"]
JSON
{ "AWSTemplateFormatVersion": "2010-09-09", "Parameters": { "KnowledgeBaseName": { "Description": "The name of the knowledge base.", "Type": "String" }, "KnowledgeBaseDescription": { "Description": "The description of the knowledge base.", "Type": "String" }, "DataSourceName": { "Description": "The name of the data source.", "Type": "String" }, "DataSourceDescription": { "Description": "The description of the data source.", "Type": "String" } }, "Resources": { "KnowledgeBaseWithPinecone": { "Type": "AWS::Bedrock::KnowledgeBase", "Properties": { "Name": { "Ref": "KnowledgeBaseName" }, "Description": { "Ref": "KnowledgeBaseDescription" }, "RoleArn": "arn:aws:iam::123456789012:role/cfn-local-test-role", "KnowledgeBaseConfiguration": { "Type": "VECTOR", "VectorKnowledgeBaseConfiguration": { "EmbeddingModelArn": { "Fn::Sub": "arn:${AWS::Partition}:bedrock:${AWS::Region}::foundation-model/amazon.titan-embed-text-v1" } } }, "StorageConfiguration": { "Type": "PINECONE", "PineconeConfiguration": { "ConnectionString": "https://xxxx.pinecone.io", "CredentialsSecretArn": "arn:aws:secretsmanager:us-west-2:123456789012:secret:pinecone-secret-abc123", "Namespace": "kb-namespace", "FieldMapping": { "TextField": "text", "MetadataField": "metadata" } } } } }, "SampleDataSource": { "Type": "AWS::Bedrock::DataSource", "Properties": { "KnowledgeBaseId": { "Ref": "KnowledgeBaseWithPinecone" }, "Name": { "Ref": "DataSourceName" }, "Description": { "Ref": "DataSourceDescription" }, "DataSourceConfiguration": { "Type": "S3", "S3Configuration": { "BucketArn": "arn:aws:s3:::kb-test-aws", "InclusionPrefixes": ["aws-overview.pdf"] } } } } } }