Ejemplos de Amazon Bedrock Runtime que utilizan para SDK PHP - AWS SDKEjemplos de código

Hay más AWS SDK ejemplos disponibles en el GitHub repositorio de AWS Doc SDK Examples.

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Ejemplos de Amazon Bedrock Runtime que utilizan para SDK PHP

Los siguientes ejemplos de código muestran cómo realizar acciones e implementar escenarios comunes mediante Amazon Bedrock Runtime. AWS SDK for PHP

Los escenarios son ejemplos de código que muestran cómo llevar a cabo una tarea específica a través de llamadas a varias funciones dentro del servicio o combinado con otros Servicios de AWS.

Cada ejemplo incluye un enlace al código fuente completo, donde puede encontrar instrucciones sobre cómo configurar y ejecutar el código en su contexto.

Escenarios

El siguiente ejemplo de código muestra cómo preparar y enviar un mensaje a una variedad de modelos de idiomas extensos (LLMs) en Amazon Bedrock

SDK para PHP
nota

Hay más información sobre. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Invoca varios LLMs en Amazon Bedrock.

namespace BedrockRuntime; class GettingStartedWithBedrockRuntime { protected BedrockRuntimeService $bedrockRuntimeService; public function runExample() { echo "\n"; echo "---------------------------------------------------------------------\n"; echo "Welcome to the Amazon Bedrock Runtime getting started demo using PHP!\n"; echo "---------------------------------------------------------------------\n"; $bedrockRuntimeService = new BedrockRuntimeService(); $prompt = 'In one paragraph, who are you?'; echo "\nPrompt: " . $prompt; echo "\n\nAnthropic Claude:"; echo $bedrockRuntimeService->invokeClaude($prompt); echo "\n\nAI21 Labs Jurassic-2: "; echo $bedrockRuntimeService->invokeJurassic2($prompt); echo "\n---------------------------------------------------------------------\n"; $image_prompt = 'stylized picture of a cute old steampunk robot'; echo "\nImage prompt: " . $image_prompt; echo "\n\nStability.ai Stable Diffusion XL:\n"; $diffusionSeed = rand(0, 4294967295); $style_preset = 'photographic'; $base64 = $bedrockRuntimeService->invokeStableDiffusion($image_prompt, $diffusionSeed, $style_preset); $image_path = $this->saveImage($base64, 'stability.stable-diffusion-xl'); echo "The generated images have been saved to $image_path"; echo "\n\nAmazon Titan Image Generation:\n"; $titanSeed = rand(0, 2147483647); $base64 = $bedrockRuntimeService->invokeTitanImage($image_prompt, $titanSeed); $image_path = $this->saveImage($base64, 'amazon.titan-image-generator-v1'); echo "The generated images have been saved to $image_path"; } private function saveImage($base64_image_data, $model_id): string { $output_dir = "output"; if (!file_exists($output_dir)) { mkdir($output_dir); } $i = 1; while (file_exists("$output_dir/$model_id" . '_' . "$i.png")) { $i++; } $image_data = base64_decode($base64_image_data); $file_path = "$output_dir/$model_id" . '_' . "$i.png"; $file = fopen($file_path, 'wb'); fwrite($file, $image_data); fclose($file); return $file_path; } }

AI21Jurassic-2 de Labs

El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a AI21 Labs Jurassic-2 mediante el modelo Invoke. API

SDK para PHP
nota

Hay más información al respecto. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Usa el modelo Invoke API para enviar un mensaje de texto.

public function invokeJurassic2($prompt) { # The different model providers have individual request and response formats. # For the format, ranges, and default values for AI21 Labs Jurassic-2, refer to: # https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-jurassic2.html $completion = ""; try { $modelId = 'ai21.j2-mid-v1'; $body = [ 'prompt' => $prompt, 'temperature' => 0.5, 'maxTokens' => 200, ]; $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $completion = $response_body->completions[0]->data->text; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $completion; }
  • Para API obtener más información, consulte InvokeModella AWS SDK for PHP APIReferencia.

Amazon Titan Image Generator

El siguiente ejemplo de código muestra cómo invocar Amazon Titan Image en Amazon Bedrock para generar una imagen.

SDK para PHP
nota

Hay más información al respecto. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Cree una imagen con el generador de imágenes Amazon Titan.

public function invokeTitanImage(string $prompt, int $seed) { // The different model providers have individual request and response formats. // For the format, ranges, and default values for Titan Image models refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-image.html $base64_image_data = ""; try { $modelId = 'amazon.titan-image-generator-v1'; $request = json_encode([ 'taskType' => 'TEXT_IMAGE', 'textToImageParams' => [ 'text' => $prompt ], 'imageGenerationConfig' => [ 'numberOfImages' => 1, 'quality' => 'standard', 'cfgScale' => 8.0, 'height' => 512, 'width' => 512, 'seed' => $seed ] ]); $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => $request, 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $base64_image_data = $response_body->images[0]; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $base64_image_data; }
  • Para API obtener más información, consulte InvokeModella AWS SDK for PHP APIReferencia.

Anthropic Claude

El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Anthropic Claude mediante el modelo Invoke. API

SDK para PHP
nota

Hay más información al respecto. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Invoque el modelo fundacional Anthropic Claude 2 para generar texto.

public function invokeClaude($prompt) { // The different model providers have individual request and response formats. // For the format, ranges, and default values for Anthropic Claude, refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-claude.html $completion = ""; try { $modelId = 'anthropic.claude-v2'; // Claude requires you to enclose the prompt as follows: $prompt = "\n\nHuman: {$prompt}\n\nAssistant:"; $body = [ 'prompt' => $prompt, 'max_tokens_to_sample' => 200, 'temperature' => 0.5, 'stop_sequences' => ["\n\nHuman:"], ]; $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $completion = $response_body->completion; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $completion; }
  • Para API obtener más información, consulte InvokeModella AWS SDK for PHP APIReferencia.

Difusión estable

El siguiente ejemplo de código muestra cómo invocar Stability.ai Stable Diffusion XL en Amazon Bedrock para generar una imagen.

SDK para PHP
nota

Hay más información al respecto. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Crea una imagen con Stable Diffusion.

public function invokeStableDiffusion(string $prompt, int $seed, string $style_preset) { // The different model providers have individual request and response formats. // For the format, ranges, and available style_presets of Stable Diffusion models refer to: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-stability-diffusion.html $base64_image_data = ""; try { $modelId = 'stability.stable-diffusion-xl-v1'; $body = [ 'text_prompts' => [ ['text' => $prompt] ], 'seed' => $seed, 'cfg_scale' => 10, 'steps' => 30 ]; if ($style_preset) { $body['style_preset'] = $style_preset; } $result = $this->bedrockRuntimeClient->invokeModel([ 'contentType' => 'application/json', 'body' => json_encode($body), 'modelId' => $modelId, ]); $response_body = json_decode($result['body']); $base64_image_data = $response_body->artifacts[0]->base64; } catch (Exception $e) { echo "Error: ({$e->getCode()}) - {$e->getMessage()}\n"; } return $base64_image_data; }
  • Para API obtener más información, consulte InvokeModella AWS SDK for PHP APIReferencia.