Ejemplos de Amazon Textract que se utilizan para SDK Python (Boto3) - AWS SDKEjemplos de código

Hay más AWS SDK ejemplos disponibles en el GitHub repositorio de AWS Doc SDK Examples.

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Ejemplos de Amazon Textract que se utilizan para SDK Python (Boto3)

Los siguientes ejemplos de código muestran cómo realizar acciones e implementar escenarios comunes AWS SDK for Python (Boto3) con Amazon Textract.

Las acciones son extractos de código de programas más grandes y deben ejecutarse en contexto. Mientras las acciones muestran cómo llamar a las funciones de servicio individuales, es posible ver las acciones en contexto en los escenarios relacionados.

Los escenarios son ejemplos de código que muestran cómo llevar a cabo una tarea específica a través de llamadas a varias funciones dentro del servicio o combinado con otros Servicios de AWS.

Cada ejemplo incluye un enlace al código fuente completo, donde puede encontrar instrucciones sobre cómo configurar y ejecutar el código en su contexto.

Acciones

En el siguiente ejemplo de código se muestra cómo usar AnalyzeDocument.

SDKpara Python (Boto3)
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

class TextractWrapper: """Encapsulates Textract functions.""" def __init__(self, textract_client, s3_resource, sqs_resource): """ :param textract_client: A Boto3 Textract client. :param s3_resource: A Boto3 Amazon S3 resource. :param sqs_resource: A Boto3 Amazon SQS resource. """ self.textract_client = textract_client self.s3_resource = s3_resource self.sqs_resource = sqs_resource def analyze_file( self, feature_types, *, document_file_name=None, document_bytes=None ): """ Detects text and additional elements, such as forms or tables, in a local image file or from in-memory byte data. The image must be in PNG or JPG format. :param feature_types: The types of additional document features to detect. :param document_file_name: The name of a document image file. :param document_bytes: In-memory byte data of a document image. :return: The response from Amazon Textract, including a list of blocks that describe elements detected in the image. """ if document_file_name is not None: with open(document_file_name, "rb") as document_file: document_bytes = document_file.read() try: response = self.textract_client.analyze_document( Document={"Bytes": document_bytes}, FeatureTypes=feature_types ) logger.info("Detected %s blocks.", len(response["Blocks"])) except ClientError: logger.exception("Couldn't detect text.") raise else: return response
  • Para API obtener más información, consulte AnalyzeDocumentla AWS SDKreferencia de Python (Boto3). API

En el siguiente ejemplo de código se muestra cómo usar DetectDocumentText.

SDKpara Python (Boto3)
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

class TextractWrapper: """Encapsulates Textract functions.""" def __init__(self, textract_client, s3_resource, sqs_resource): """ :param textract_client: A Boto3 Textract client. :param s3_resource: A Boto3 Amazon S3 resource. :param sqs_resource: A Boto3 Amazon SQS resource. """ self.textract_client = textract_client self.s3_resource = s3_resource self.sqs_resource = sqs_resource def detect_file_text(self, *, document_file_name=None, document_bytes=None): """ Detects text elements in a local image file or from in-memory byte data. The image must be in PNG or JPG format. :param document_file_name: The name of a document image file. :param document_bytes: In-memory byte data of a document image. :return: The response from Amazon Textract, including a list of blocks that describe elements detected in the image. """ if document_file_name is not None: with open(document_file_name, "rb") as document_file: document_bytes = document_file.read() try: response = self.textract_client.detect_document_text( Document={"Bytes": document_bytes} ) logger.info("Detected %s blocks.", len(response["Blocks"])) except ClientError: logger.exception("Couldn't detect text.") raise else: return response
  • Para API obtener más información, consulte DetectDocumentTextla AWS SDKreferencia de Python (Boto3). API

En el siguiente ejemplo de código se muestra cómo usar GetDocumentAnalysis.

SDKpara Python (Boto3)
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

class TextractWrapper: """Encapsulates Textract functions.""" def __init__(self, textract_client, s3_resource, sqs_resource): """ :param textract_client: A Boto3 Textract client. :param s3_resource: A Boto3 Amazon S3 resource. :param sqs_resource: A Boto3 Amazon SQS resource. """ self.textract_client = textract_client self.s3_resource = s3_resource self.sqs_resource = sqs_resource def get_analysis_job(self, job_id): """ Gets data for a previously started detection job that includes additional elements. :param job_id: The ID of the job to retrieve. :return: The job data, including a list of blocks that describe elements detected in the image. """ try: response = self.textract_client.get_document_analysis(JobId=job_id) job_status = response["JobStatus"] logger.info("Job %s status is %s.", job_id, job_status) except ClientError: logger.exception("Couldn't get data for job %s.", job_id) raise else: return response
  • Para API obtener más información, consulte GetDocumentAnalysisla AWS SDKreferencia de Python (Boto3). API

En el siguiente ejemplo de código se muestra cómo usar StartDocumentAnalysis.

SDKpara Python (Boto3)
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Iniciar un trabajo asíncrono para analizar un documento.

class TextractWrapper: """Encapsulates Textract functions.""" def __init__(self, textract_client, s3_resource, sqs_resource): """ :param textract_client: A Boto3 Textract client. :param s3_resource: A Boto3 Amazon S3 resource. :param sqs_resource: A Boto3 Amazon SQS resource. """ self.textract_client = textract_client self.s3_resource = s3_resource self.sqs_resource = sqs_resource def start_analysis_job( self, bucket_name, document_file_name, feature_types, sns_topic_arn, sns_role_arn, ): """ Starts an asynchronous job to detect text and additional elements, such as forms or tables, in an image stored in an Amazon S3 bucket. Textract publishes a notification to the specified Amazon SNS topic when the job completes. The image must be in PNG, JPG, or PDF format. :param bucket_name: The name of the Amazon S3 bucket that contains the image. :param document_file_name: The name of the document image stored in Amazon S3. :param feature_types: The types of additional document features to detect. :param sns_topic_arn: The Amazon Resource Name (ARN) of an Amazon SNS topic where job completion notification is published. :param sns_role_arn: The ARN of an AWS Identity and Access Management (IAM) role that can be assumed by Textract and grants permission to publish to the Amazon SNS topic. :return: The ID of the job. """ try: response = self.textract_client.start_document_analysis( DocumentLocation={ "S3Object": {"Bucket": bucket_name, "Name": document_file_name} }, NotificationChannel={ "SNSTopicArn": sns_topic_arn, "RoleArn": sns_role_arn, }, FeatureTypes=feature_types, ) job_id = response["JobId"] logger.info( "Started text analysis job %s on %s.", job_id, document_file_name ) except ClientError: logger.exception("Couldn't analyze text in %s.", document_file_name) raise else: return job_id
  • Para API obtener más información, consulte StartDocumentAnalysisla AWS SDKreferencia de Python (Boto3). API

En el siguiente ejemplo de código se muestra cómo usar StartDocumentTextDetection.

SDKpara Python (Boto3)
nota

Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS.

Iniciar un trabajo asíncrono para detectar texto en un documento.

class TextractWrapper: """Encapsulates Textract functions.""" def __init__(self, textract_client, s3_resource, sqs_resource): """ :param textract_client: A Boto3 Textract client. :param s3_resource: A Boto3 Amazon S3 resource. :param sqs_resource: A Boto3 Amazon SQS resource. """ self.textract_client = textract_client self.s3_resource = s3_resource self.sqs_resource = sqs_resource def start_detection_job( self, bucket_name, document_file_name, sns_topic_arn, sns_role_arn ): """ Starts an asynchronous job to detect text elements in an image stored in an Amazon S3 bucket. Textract publishes a notification to the specified Amazon SNS topic when the job completes. The image must be in PNG, JPG, or PDF format. :param bucket_name: The name of the Amazon S3 bucket that contains the image. :param document_file_name: The name of the document image stored in Amazon S3. :param sns_topic_arn: The Amazon Resource Name (ARN) of an Amazon SNS topic where the job completion notification is published. :param sns_role_arn: The ARN of an AWS Identity and Access Management (IAM) role that can be assumed by Textract and grants permission to publish to the Amazon SNS topic. :return: The ID of the job. """ try: response = self.textract_client.start_document_text_detection( DocumentLocation={ "S3Object": {"Bucket": bucket_name, "Name": document_file_name} }, NotificationChannel={ "SNSTopicArn": sns_topic_arn, "RoleArn": sns_role_arn, }, ) job_id = response["JobId"] logger.info( "Started text detection job %s on %s.", job_id, document_file_name ) except ClientError: logger.exception("Couldn't detect text in %s.", document_file_name) raise else: return job_id

Escenarios

El siguiente ejemplo de código muestra cómo explorar los resultados de Amazon Textract a través de una aplicación interactiva.

SDKpara Python (Boto3)

Muestra cómo utilizar Amazon Textract para detectar elementos de texto, formulario y tabla en una imagen de documento. AWS SDK for Python (Boto3) La imagen de entrada y la salida de Amazon Textract aparecen en una aplicación Tkinter que permite explorar los elementos detectados.

  • Envía la imagen de un documento a Amazon Textract y explora el resultado de los elementos detectados.

  • Envía imágenes directamente a Amazon Textract o mediante un bucket de Amazon Simple Storage Service (Amazon S3).

  • Utilice la función asincrónica APIs para iniciar un trabajo que publique una notificación en un tema de Amazon Simple Notification Service (AmazonSNS) cuando se complete el trabajo.

  • Sondea una cola de Amazon Simple Queue Service (AmazonSQS) para ver un mensaje de finalización del trabajo y muestra los resultados.

Para obtener el código fuente completo y las instrucciones sobre cómo configurarlo y ejecutarlo, consulte el ejemplo completo en. GitHub

Servicios utilizados en este ejemplo
  • Amazon S3

  • Amazon SNS

  • Amazon SQS

  • Amazon Textract

En el siguiente ejemplo de código, se muestra cómo utilizar Amazon Comprehend para detectar entidades en el texto extraído por Amazon Textract Texact de una imagen almacenada en Amazon S3.

SDKpara Python (Boto3)

Muestra cómo usarlo AWS SDK for Python (Boto3) en un cuaderno de Jupyter para detectar entidades en el texto extraído de una imagen. En este ejemplo, se utiliza Amazon Textract para extraer texto de una imagen almacenada en Amazon Simple Storage Service (Amazon S3) y Amazon Comprehend para detectar entidades en el texto extraído.

Este ejemplo es un bloc de notas Jupyter y debe ejecutarse en un entorno que pueda alojar blocs de notas. Para obtener instrucciones sobre cómo ejecutar el ejemplo con Amazon SageMaker, consulta las instrucciones en TextractAndComprehendNotebook.ipynb.

Para ver el código fuente completo y las instrucciones sobre cómo configurarlo y ejecutarlo, consulta el ejemplo completo en. GitHub

Servicios utilizados en este ejemplo
  • Amazon Comprehend

  • Amazon S3

  • Amazon Textract