Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Casos de uso de ECOMMERCE
En las siguientes secciones se enumeran los requisitos y el nombre de recurso de Amazon (ARN) para cada caso de uso de ECOMMERCE. Para todos los casos de uso, los datos de sus interacciones deben tener lo siguiente:
-
Como mínimo, 1000 registros de interacciones de elementos de los usuarios que interactúan con los elementos de su catálogo. Estas interacciones pueden provenir de importaciones masivas, de eventos transmitidos o ambos.
-
Como mínimo, 25 ID de usuarios únicos con al menos dos interacciones de elementos para cada uno.
Para obtener recomendaciones de calidad, le sugerimos que tenga al menos 50 000 interacciones de elementos de al menos 1000 usuarios, con dos o más interacciones de elementos cada uno.
nota
Si usa la API de CreateRecommender, proporcione el ARN que se indica aquí para el ARN de la receta.
Temas
Lo más visto
Obtenga recomendaciones de elementos populares en función del número de veces que sus clientes hayan visto un elemento.
-
ARN de receta:
arn:aws:personalize:::recipe/aws-ecomm-popular-items-by-views
-
GetRecommendations requisitos:
userId
: obligatorioitemId
: no se utilizainputList
: N/D -
Conjuntos de datos utilizados durante el entrenamiento: solo conjunto de datos de interacciones de elementos (obligatorio)
-
Tipos de eventos obligatorios: 1000 eventos de
View
como mínimo.
Los más vendidos
Obtenga recomendaciones de elementos populares en función del número de veces que sus clientes hayan comprado un elemento.
-
ARN de receta:
arn:aws:personalize:::recipe/aws-ecomm-popular-items-by-purchases
-
GetRecommendations requisitos:
userId
: obligatorioitemId
: no se utilizainputList
: N/D -
Conjuntos de datos utilizados durante el entrenamiento: solo conjunto de datos de interacciones de elementos (obligatorio)
-
Tipos de eventos obligatorios: 1000 eventos de
Purchase
como mínimo.
Con frecuencia se compran juntos
Obtenga recomendaciones de elementos que los clientes con frecuencia compren juntos con un elemento que especifique.
-
ARN de receta:
arn:aws:personalize:::recipe/aws-ecomm-frequently-bought-together
-
GetRecommendations requisitos:
userId
: Necesario solo si filtra por CurrentUseritemId
: obligatorioinputList
: N/D -
Conjuntos de datos utilizados durante el entrenamiento: solo conjunto de datos de interacciones de elementos (obligatorio)
-
Tipos de eventos obligatorios: 1000 eventos de
Purchase
como mínimo.
Los clientes que vieron X también vieron
Obtenga recomendaciones de elementos que los clientes también vieron en función del elemento que especifique. Con este caso de uso, Amazon Personalize filtra automáticamente los elementos que el usuario compró en función del userId que especifique y de los eventos de Purchase
. Si aplica su propio filtro, este se aplica después de filtrar los elementos que el usuario ya ha comprado.
Al filtrar, Amazon Personalize tiene en cuenta como máximo 100 interacciones de elementos por usuario y por tipo de evento. Esto se aplica a cualquier filtro automático o personalizado. Puede usar la consola de Service Quotas
-
ARN de receta:
arn:aws:personalize:::recipe/aws-ecomm-customers-who-viewed-x-also-viewed
-
GetRecommendations requisitos:
userId
: obligatorioitemId
: obligatorioinputList
: N/D -
Conjuntos de datos utilizados durante el entrenamiento: solo conjunto de datos de interacciones de elementos (obligatorio)
-
Tipos de eventos obligatorios: 1000 eventos de
View
como mínimo. -
Tipos de eventos recomendados: eventos de
Purchase
.
Recomendaciones
Obtenga recomendaciones personalizadas de elementos en función del usuario que especifique. Con este caso de uso, Amazon Personalize filtra automáticamente los elementos que el usuario ha comprado en función del userId que especifique y de los eventos de Purchase
. Si aplica su propio filtro, este se aplica después de filtrar los elementos que el usuario ya ha comprado.
Al filtrar, Amazon Personalize tiene en cuenta como máximo 100 interacciones de elementos por usuario y por tipo de evento. Esto se aplica a cualquier filtro automático o personalizado. Puede usar la consola de Service Quotas
Al recomendar elementos, este caso de uso utiliza real-time-personalizationy explora. Además, utiliza actualizaciones automáticas para considerar nuevos elementos como recomendaciones.
-
ARN de receta:
arn:aws:personalize:::recipe/aws-ecomm-recommended-for-you
-
GetRecommendations requisitos:
userId
: obligatorioitemId
: no se utilizainputList
: N/D -
Conjuntos de datos utilizados en el entrenamiento:
Interacciones (obligatorio)
Elementos (opcional)
Usuarios (opcional)
-
Número obligatorio de eventos: 1000 eventos como mínimo.
-
Tipos de eventos recomendados: eventos
View
yPurchase
. -
Parámetros de configuración de exploración: al crear un generador de recomendaciones, puede configurar la exploración con lo siguiente.
-
Énfasis en la exploración de los elementos menos relevantes (ponderación de la exploración): configure cuánto explorar. Especifique un valor decimal entre 0 y 1. El valor predeterminado es 0,3. Cuanto más se acerque el valor a 1, mayor será la exploración. Con una mayor exploración, las recomendaciones incluyen más elementos con menos datos de interacciones de elementos o relevancia en función del comportamiento anterior. En cero, no se realiza ninguna exploración y las recomendaciones se basan en los datos actuales (relevancia).
-
Límite de antigüedad del elemento de exploración: especifique la antigüedad máxima del elemento en días desde la última interacción entre todos los elementos del conjunto de datos de interacciones de elementos. Esto define el alcance de la exploración del elemento en función de su antigüedad. Amazon Personalize determina la antigüedad del elemento en función de su marca de tiempo de creación o, si faltan los datos de esa marca, de los datos de interacciones de elementos. Para obtener más información sobre cómo Amazon Personalize determina la antigüedad del elemento, consulte Datos de la marca de tiempo de creación.
Para aumentar el número de elementos que Amazon Personalize considera durante la exploración, indique un valor superior. El mínimo es de 1 día y el valor predeterminado es de 30 días. Las recomendaciones pueden incluir elementos con una antigüedad superior al límite de antigüedad que especifique. Esto se debe a que estos elementos son relevantes para el usuario y la exploración no los identificó.
-