Ejemplos - Amazon Redshift

Ejemplos

En el siguiente ejemplo, se crea una tabla denominada SALES en el esquema externo spectrum de Amazon Redshift. Los datos están en archivos de texto delimitados por tabulaciones. La cláusula TABLE PROPERTIES configura la propiedad numRows con 170 000 filas.

Según la identidad que utilice para ejecutar CREATE EXTERNAL TABLE, es posible que deba configurar permisos de IAM. Como práctica recomendada, aconsejamos asociar las políticas de permisos a un rol de IAM y luego asignarlo a los usuarios y grupos según sea necesario. Para obtener más información, consulte Administración de identidades y accesos en Amazon Redshift.

create external table spectrum.sales( salesid integer, listid integer, sellerid integer, buyerid integer, eventid integer, saledate date, qtysold smallint, pricepaid decimal(8,2), commission decimal(8,2), saletime timestamp) row format delimited fields terminated by '\t' stored as textfile location 's3://redshift-downloads/tickit/spectrum/sales/' table properties ('numRows'='170000');

En el siguiente ejemplo, se crea una tabla que utiliza JsonSerDe para hacer referencia a datos con formato JSON.

create external table spectrum.cloudtrail_json ( event_version int, event_id bigint, event_time timestamp, event_type varchar(10), awsregion varchar(20), event_name varchar(max), event_source varchar(max), requesttime timestamp, useragent varchar(max), recipientaccountid bigint) row format serde 'org.openx.data.jsonserde.JsonSerDe' with serdeproperties ( 'dots.in.keys' = 'true', 'mapping.requesttime' = 'requesttimestamp' ) location 's3://amzn-s3-demo-bucket/json/cloudtrail';

En el siguiente ejemplo CREATE EXTERNAL TABLE AS se crea una tabla externa no particionada. Luego, escribe el resultado de la consulta SELECT con Apache Parquet en la ubicación de destino de Amazon S3.

CREATE EXTERNAL TABLE spectrum.lineitem STORED AS parquet LOCATION 'S3://amzn-s3-demo-bucket/cetas/lineitem/' AS SELECT * FROM local_lineitem;

En el siguiente ejemplo, se crea una tabla externa particionada y se incluyen las columnas de partición en la consulta SELECT.

CREATE EXTERNAL TABLE spectrum.partitioned_lineitem PARTITIONED BY (l_shipdate, l_shipmode) STORED AS parquet LOCATION 'S3://amzn-s3-demo-bucket/cetas/partitioned_lineitem/' AS SELECT l_orderkey, l_shipmode, l_shipdate, l_partkey FROM local_table;

Para obtener una lista de bases de datos existentes en el catálogo de datos externos, consulte la vista del sistema SVV_EXTERNAL_DATABASES.

select eskind,databasename,esoptions from svv_external_databases order by databasename;
eskind | databasename | esoptions -------+--------------+---------------------------------------------------------------------------------- 1 | default | {"REGION":"us-west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"} 1 | sampledb | {"REGION":"us-west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"} 1 | spectrumdb | {"REGION":"us-west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}

Para ver detalles de tablas externas, consulte las vistas del sistema SVV_EXTERNAL_TABLES y SVV_EXTERNAL_COLUMNS.

En el siguiente ejemplo, se consulta la vista SVV_EXTERNAL_TABLES.

select schemaname, tablename, location from svv_external_tables;
schemaname | tablename | location -----------+----------------------+-------------------------------------------------------- spectrum | sales | s3://redshift-downloads/tickit/spectrum/sales spectrum | sales_part | s3://redshift-downloads/tickit/spectrum/sales_partition

En el siguiente ejemplo, se consulta la vista SVV_EXTERNAL_COLUMNS.

select * from svv_external_columns where schemaname like 'spectrum%' and tablename ='sales';
schemaname | tablename | columnname | external_type | columnnum | part_key -----------+-----------+------------+---------------+-----------+--------- spectrum | sales | salesid | int | 1 | 0 spectrum | sales | listid | int | 2 | 0 spectrum | sales | sellerid | int | 3 | 0 spectrum | sales | buyerid | int | 4 | 0 spectrum | sales | eventid | int | 5 | 0 spectrum | sales | saledate | date | 6 | 0 spectrum | sales | qtysold | smallint | 7 | 0 spectrum | sales | pricepaid | decimal(8,2) | 8 | 0 spectrum | sales | commission | decimal(8,2) | 9 | 0 spectrum | sales | saletime | timestamp | 10 | 0

Para ver las particiones de la tabla, use la siguiente consulta.

select schemaname, tablename, values, location from svv_external_partitions where tablename = 'sales_part';
schemaname | tablename | values | location -----------+------------+----------------+------------------------------------------------------------------------- spectrum | sales_part | ["2008-01-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01 spectrum | sales_part | ["2008-02-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02 spectrum | sales_part | ["2008-03-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03 spectrum | sales_part | ["2008-04-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04 spectrum | sales_part | ["2008-05-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-05 spectrum | sales_part | ["2008-06-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-06 spectrum | sales_part | ["2008-07-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-07 spectrum | sales_part | ["2008-08-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-08 spectrum | sales_part | ["2008-09-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-09 spectrum | sales_part | ["2008-10-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-10 spectrum | sales_part | ["2008-11-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-11 spectrum | sales_part | ["2008-12-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-12

El siguiente ejemplo devuelve el tamaño total de los archivos de datos relacionados de una tabla externa.

select distinct "$path", "$size" from spectrum.sales_part; $path | $size --------------------------------------------------------------------------+------- s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/ | 1616 s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/ | 1444 s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/ | 1444

Ejemplos de partición

Para crear una tabla externa particionada por fecha, ejecute el siguiente comando.

create external table spectrum.sales_part( salesid integer, listid integer, sellerid integer, buyerid integer, eventid integer, dateid smallint, qtysold smallint, pricepaid decimal(8,2), commission decimal(8,2), saletime timestamp) partitioned by (saledate date) row format delimited fields terminated by '|' stored as textfile location 's3://redshift-downloads/tickit/spectrum/sales_partition/' table properties ('numRows'='170000');

Para agregar las particiones, ejecute los siguientes comandos ALTER TABLE.

alter table spectrum.sales_part add if not exists partition (saledate='2008-01-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-02-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-03-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-04-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-05-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-05/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-06-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-06/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-07-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-07/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-08-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-08/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-09-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-09/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-10-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-10/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-11-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-11/'; alter table spectrum.sales_part add if not exists partition (saledate='2008-12-01') location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-12/';

Para seleccionar los datos de la tabla particionada, ejecute la siguiente consulta.

select top 10 spectrum.sales_part.eventid, sum(spectrum.sales_part.pricepaid) from spectrum.sales_part, event where spectrum.sales_part.eventid = event.eventid and spectrum.sales_part.pricepaid > 30 and saledate = '2008-12-01' group by spectrum.sales_part.eventid order by 2 desc;
eventid | sum --------+--------- 914 | 36173.00 5478 | 27303.00 5061 | 26383.00 4406 | 26252.00 5324 | 24015.00 1829 | 23911.00 3601 | 23616.00 3665 | 23214.00 6069 | 22869.00 5638 | 22551.00

Para ver particiones de la tabla externa, consulte la vista del sistema SVV_EXTERNAL_PARTITIONS.

select schemaname, tablename, values, location from svv_external_partitions where tablename = 'sales_part';
schemaname | tablename | values | location -----------+------------+----------------+-------------------------------------------------- spectrum | sales_part | ["2008-01-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01 spectrum | sales_part | ["2008-02-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02 spectrum | sales_part | ["2008-03-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03 spectrum | sales_part | ["2008-04-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04 spectrum | sales_part | ["2008-05-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-05 spectrum | sales_part | ["2008-06-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-06 spectrum | sales_part | ["2008-07-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-07 spectrum | sales_part | ["2008-08-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-08 spectrum | sales_part | ["2008-09-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-09 spectrum | sales_part | ["2008-10-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-10 spectrum | sales_part | ["2008-11-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-11 spectrum | sales_part | ["2008-12-01"] | s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-12

Ejemplos de formato de fila

A continuación, se muestra un ejemplo de cómo especificar los parámetros ROW FORMAT SERDE para archivos de datos almacenados con formato AVRO.

create external table spectrum.sales(salesid int, listid int, sellerid int, buyerid int, eventid int, dateid int, qtysold int, pricepaid decimal(8,2), comment VARCHAR(255)) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe' WITH SERDEPROPERTIES ('avro.schema.literal'='{\"namespace\": \"dory.sample\",\"name\": \"dory_avro\",\"type\": \"record\", \"fields\": [{\"name\":\"salesid\", \"type\":\"int\"}, {\"name\":\"listid\", \"type\":\"int\"}, {\"name\":\"sellerid\", \"type\":\"int\"}, {\"name\":\"buyerid\", \"type\":\"int\"}, {\"name\":\"eventid\",\"type\":\"int\"}, {\"name\":\"dateid\",\"type\":\"int\"}, {\"name\":\"qtysold\",\"type\":\"int\"}, {\"name\":\"pricepaid\", \"type\": {\"type\": \"bytes\", \"logicalType\": \"decimal\", \"precision\": 8, \"scale\": 2}}, {\"name\":\"comment\",\"type\":\"string\"}]}') STORED AS AVRO location 's3://amzn-s3-demo-bucket/avro/sales' ;

A continuación se muestra un ejemplo de especificación de los parámetros ROW FORMAT SERDE mediante RegEx.

create external table spectrum.types( cbigint bigint, cbigint_null bigint, cint int, cint_null int) row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe' with serdeproperties ('input.regex'='([^\\x01]+)\\x01([^\\x01]+)\\x01([^\\x01]+)\\x01([^\\x01]+)') stored as textfile location 's3://amzn-s3-demo-bucket/regex/types';

A continuación se muestra un ejemplo de especificación de los parámetros ROW FORMAT SERDE mediante Grok.

create external table spectrum.grok_log( timestamp varchar(255), pid varchar(255), loglevel varchar(255), progname varchar(255), message varchar(255)) row format serde 'com.amazonaws.glue.serde.GrokSerDe' with serdeproperties ('input.format'='[DFEWI], \\[%{TIMESTAMP_ISO8601:timestamp} #%{POSINT:pid:int}\\] *(?<loglevel>:DEBUG|FATAL|ERROR|WARN|INFO) -- +%{DATA:progname}: %{GREEDYDATA:message}') stored as textfile location 's3://DOC-EXAMPLE-BUCKET/grok/logs';

A continuación, se muestra un ejemplo en el que se define un registro de acceso al servidor de Amazon S3 en un bucket de S3. Puede utilizar Redshift Spectrum para consultar los registros de acceso de Amazon S3.

CREATE EXTERNAL TABLE spectrum.mybucket_s3_logs( bucketowner varchar(255), bucket varchar(255), requestdatetime varchar(2000), remoteip varchar(255), requester varchar(255), requested varchar(255), operation varchar(255), key varchar(255), requesturi_operation varchar(255), requesturi_key varchar(255), requesturi_httpprotoversion varchar(255), httpstatus varchar(255), errorcode varchar(255), bytessent bigint, objectsize bigint, totaltime varchar(255), turnaroundtime varchar(255), referrer varchar(255), useragent varchar(255), versionid varchar(255) ) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES ( 'input.regex' = '([^ ]*) ([^ ]*) \\[(.*?)\\] ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) \"([^ ]*)\\s*([^ ]*)\\s*([^ ]*)\" (- |[^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) (\"[^\"]*\") ([^ ]*).*$') LOCATION 's3://amzn-s3-demo-bucket/s3logs’;

A continuación, se muestra un ejemplo de cómo especificar los parámetros ROW FORMAT SERDE para datos con formato ION.

CREATE EXTERNAL TABLE tbl_name (columns) ROW FORMAT SERDE 'com.amazon.ionhiveserde.IonHiveSerDe' STORED AS INPUTFORMAT 'com.amazon.ionhiveserde.formats.IonInputFormat' OUTPUTFORMAT 'com.amazon.ionhiveserde.formats.IonOutputFormat' LOCATION 's3://amzn-s3-demo-bucket/prefix'

Ejemplos de control de datos

Los ejemplos siguientes acceden al archivo spi_global_rankings.csv. Puede cargar el archivo spi_global_rankings.csv en un bucket de Amazon S3 para probar estos ejemplos.

En el siguiente ejemplo, se crea el esquema externo schema_spectrum_uddh y la base de datos spectrum_db_uddh. En el caso de aws-account-id, ingrese su ID de cuenta de AWS y, para role-name, ingrese el nombre de rol de Redshift Spectrum.

create external schema schema_spectrum_uddh from data catalog database 'spectrum_db_uddh' iam_role 'arn:aws:iam::aws-account-id:role/role-name' create external database if not exists;

En el siguiente ejemplo, se crea una tabla externa soccer_league en el esquema externo schema_spectrum_uddh.

CREATE EXTERNAL TABLE schema_spectrum_uddh.soccer_league ( league_rank smallint, prev_rank smallint, club_name varchar(15), league_name varchar(20), league_off decimal(6,2), league_def decimal(6,2), league_spi decimal(6,2), league_nspi integer ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n\l' stored as textfile LOCATION 's3://spectrum-uddh/league/' table properties ('skip.header.line.count'='1');

Verifique el número de filas en la tabla soccer_league.

select count(*) from schema_spectrum_uddh.soccer_league;

Se muestra el número de filas.

count 645

En la siguiente consulta, se muestran los 10 clubes principales. Dado que el club Barcelona tiene un carácter no válido en la cadena, se muestra un NULL en el nombre.

select league_rank,club_name,league_name,league_nspi from schema_spectrum_uddh.soccer_league where league_rank between 1 and 10;
league_rank club_name league_name league_nspi 1 Manchester City Barclays Premier Lea 34595 2 Bayern Munich German Bundesliga 34151 3 Liverpool Barclays Premier Lea 33223 4 Chelsea Barclays Premier Lea 32808 5 Ajax Dutch Eredivisie 32790 6 Atletico Madrid Spanish Primera Divi 31517 7 Real Madrid Spanish Primera Divi 31469 8 NULL Spanish Primera Divi 31321 9 RB Leipzig German Bundesliga 31014 10 Paris Saint-Ger French Ligue 1 30929

En el siguiente ejemplo, se modifica la tabla soccer_league para especificar las propiedades de tabla externa invalid_char_handling, replacement_char y data_cleansing_enabled con objeto de insertar un signo de interrogación (?) como reemplazo de caracteres no previstos.

alter table schema_spectrum_uddh.soccer_league set table properties ('invalid_char_handling'='REPLACE','replacement_char'='?','data_cleansing_enabled'='true');

En el siguiente ejemplo, se consulta la tabla soccer_league para equipos con una clasificación del 1 al 10.

select league_rank,club_name,league_name,league_nspi from schema_spectrum_uddh.soccer_league where league_rank between 1 and 10;

Dado que las propiedades de la tabla se han modificado, los resultados muestran los 10 principales clubes, con el carácter de sustitución del signo de interrogación (?) en la octava fila para el club Barcelona.

league_rank club_name league_name league_nspi 1 Manchester City Barclays Premier Lea 34595 2 Bayern Munich German Bundesliga 34151 3 Liverpool Barclays Premier Lea 33223 4 Chelsea Barclays Premier Lea 32808 5 Ajax Dutch Eredivisie 32790 6 Atletico Madrid Spanish Primera Divi 31517 7 Real Madrid Spanish Primera Divi 31469 8 Barcel?na Spanish Primera Divi 31321 9 RB Leipzig German Bundesliga 31014 10 Paris Saint-Ger French Ligue 1 30929

En el siguiente ejemplo, se modifica la tabla soccer_league para especificar las propiedades de tabla externa invalid_char_handling con objeto de eliminar filas con caracteres no previstos.

alter table schema_spectrum_uddh.soccer_league set table properties ('invalid_char_handling'='DROP_ROW','data_cleansing_enabled'='true');

En el siguiente ejemplo, se consulta la tabla soccer_league para equipos con una clasificación del 1 al 10.

select league_rank,club_name,league_name,league_nspi from schema_spectrum_uddh.soccer_league where league_rank between 1 and 10;

En los resultados se muestran los clubes principales, pero no se incluye la octava fila, que correspondería al club Barcelona.

league_rank club_name league_name league_nspi 1 Manchester City Barclays Premier Lea 34595 2 Bayern Munich German Bundesliga 34151 3 Liverpool Barclays Premier Lea 33223 4 Chelsea Barclays Premier Lea 32808 5 Ajax Dutch Eredivisie 32790 6 Atletico Madrid Spanish Primera Divi 31517 7 Real Madrid Spanish Primera Divi 31469 9 RB Leipzig German Bundesliga 31014 10 Paris Saint-Ger French Ligue 1 30929