Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Análisis de un vídeo almacenado en un bucket de Amazon S3 con Java o Python (SDK)
Este procedimiento muestra cómo detectar etiquetas en un vídeo mediante la utilización de las operaciones de detección de etiquetas de Amazon Rekognition Video, un vídeo almacenado en un bucket de Amazon S3 y un tema de Amazon SNS. El procedimiento también muestra cómo utilizar una cola de Amazon SQS para obtener el estado de realización del tema de Amazon SNS. Para obtener más información, consulte Cómo llamar a las operaciones de Amazon Rekognition Video. No está limitado a la utilización de una cola de Amazon SQS: Por ejemplo, puede utilizar una función de AWS Lambda para obtener el estado de realización. Para obtener más información, consulte Invocación de funciones Lambda mediante notificaciones de Amazon SNS.
En el código de ejemplo de este procedimiento, se explica cómo hacer lo siguiente:
-
Cree el tema de Amazon SNS.
-
Cree la cola de Amazon SQS.
-
Dar a Amazon Rekognition Video permiso para publicar el estado de realización de una operación de análisis de vídeo en el tema de Amazon SNS.
-
Suscriba la cola de Amazon SQS al tema de Amazon SNS.
-
Inicie la solicitud de análisis de vídeo llamando a StartLabelDetection.
-
Obtenga el estado de realización a partir de la cola de Amazon SQS. En el ejemplo se hace un seguimiento del identificador de trabajo (
JobId
) que devuelveStartLabelDetection
y solo obtiene los resultados de identificadores de trabajo coincidentes que se leen desde el estado de realización. Se trata de un aspecto importante si otras aplicaciones están utilizando la misma cola y tema. Para simplificar, en el ejemplo se eliminan los trabajos que no coinciden. Plantéese añadirlos a una cola de mensajes fallidos de Amazon SQS para examinarlos posteriormente. -
Obtenga y muestre los resultados del análisis de vídeo llamando a GetLabelDetection.
Requisitos previos
El código de ejemplo de este procedimiento se proporciona en Java y Python. Debe tener instalado el SDK de AWS adecuado. Para obtener más información, consulte Introducción a Amazon Rekognition. La cuenta de AWS que utilice debe tener permisos de acceso a la API de Amazon Rekognition. Para obtener más información, consulte Acciones definidas por Amazon Rekognition.
Para detectar etiquetas en un vídeo
-
Configure el acceso de los usuarios a Amazon Rekognition Video y configure el acceso de Amazon Rekognition Video a Amazon SNS. Para obtener más información, consulte Configuración de Amazon Rekognition Video. No es necesario realizar los pasos 3, 4, 5 y 6, ya que el código de ejemplo crea y configura el tema de Amazon SNS y la cola de Amazon SQS.
-
Cargue un archivo de vídeo con formato MOV o MPEG-4 en el bucket de Amazon S3. Para realizar pruebas, cargue un vídeo con una duración inferior a 30 segundos.
Para ver las instrucciones, consulte Carga de objetos en Amazon S3 en la Guía del usuario de Amazon Simple Storage Service.
-
Utilice los siguientes ejemplos de código para detectar etiquetas en un vídeo.
- Java
-
En la función
main
:-
reemplace
roleArn
por el ARN del rol de servicio de IAM que creó en el paso 7 de Para configurar Amazon Rekognition Video. -
Reemplace los valores de
bucket
yvideo
por el bucket y el nombre del archivo de vídeo que especificó en el paso 2.
//Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package com.amazonaws.samples; import com.amazonaws.auth.policy.Policy; import com.amazonaws.auth.policy.Condition; import com.amazonaws.auth.policy.Principal; import com.amazonaws.auth.policy.Resource; import com.amazonaws.auth.policy.Statement; import com.amazonaws.auth.policy.Statement.Effect; import com.amazonaws.auth.policy.actions.SQSActions; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.CelebrityDetail; import com.amazonaws.services.rekognition.model.CelebrityRecognition; import com.amazonaws.services.rekognition.model.CelebrityRecognitionSortBy; import com.amazonaws.services.rekognition.model.ContentModerationDetection; import com.amazonaws.services.rekognition.model.ContentModerationSortBy; import com.amazonaws.services.rekognition.model.Face; import com.amazonaws.services.rekognition.model.FaceDetection; import com.amazonaws.services.rekognition.model.FaceMatch; import com.amazonaws.services.rekognition.model.FaceSearchSortBy; import com.amazonaws.services.rekognition.model.GetCelebrityRecognitionRequest; import com.amazonaws.services.rekognition.model.GetCelebrityRecognitionResult; import com.amazonaws.services.rekognition.model.GetContentModerationRequest; import com.amazonaws.services.rekognition.model.GetContentModerationResult; import com.amazonaws.services.rekognition.model.GetFaceDetectionRequest; import com.amazonaws.services.rekognition.model.GetFaceDetectionResult; import com.amazonaws.services.rekognition.model.GetFaceSearchRequest; import com.amazonaws.services.rekognition.model.GetFaceSearchResult; import com.amazonaws.services.rekognition.model.GetLabelDetectionRequest; import com.amazonaws.services.rekognition.model.GetLabelDetectionResult; import com.amazonaws.services.rekognition.model.GetPersonTrackingRequest; import com.amazonaws.services.rekognition.model.GetPersonTrackingResult; import com.amazonaws.services.rekognition.model.Instance; import com.amazonaws.services.rekognition.model.Label; import com.amazonaws.services.rekognition.model.LabelDetection; import com.amazonaws.services.rekognition.model.LabelDetectionSortBy; import com.amazonaws.services.rekognition.model.NotificationChannel; import com.amazonaws.services.rekognition.model.Parent; import com.amazonaws.services.rekognition.model.PersonDetection; import com.amazonaws.services.rekognition.model.PersonMatch; import com.amazonaws.services.rekognition.model.PersonTrackingSortBy; import com.amazonaws.services.rekognition.model.S3Object; import com.amazonaws.services.rekognition.model.StartCelebrityRecognitionRequest; import com.amazonaws.services.rekognition.model.StartCelebrityRecognitionResult; import com.amazonaws.services.rekognition.model.StartContentModerationRequest; import com.amazonaws.services.rekognition.model.StartContentModerationResult; import com.amazonaws.services.rekognition.model.StartFaceDetectionRequest; import com.amazonaws.services.rekognition.model.StartFaceDetectionResult; import com.amazonaws.services.rekognition.model.StartFaceSearchRequest; import com.amazonaws.services.rekognition.model.StartFaceSearchResult; import com.amazonaws.services.rekognition.model.StartLabelDetectionRequest; import com.amazonaws.services.rekognition.model.StartLabelDetectionResult; import com.amazonaws.services.rekognition.model.StartPersonTrackingRequest; import com.amazonaws.services.rekognition.model.StartPersonTrackingResult; import com.amazonaws.services.rekognition.model.Video; import com.amazonaws.services.rekognition.model.VideoMetadata; import com.amazonaws.services.sns.AmazonSNS; import com.amazonaws.services.sns.AmazonSNSClientBuilder; import com.amazonaws.services.sns.model.CreateTopicRequest; import com.amazonaws.services.sns.model.CreateTopicResult; import com.amazonaws.services.sqs.AmazonSQS; import com.amazonaws.services.sqs.AmazonSQSClientBuilder; import com.amazonaws.services.sqs.model.CreateQueueRequest; import com.amazonaws.services.sqs.model.Message; import com.amazonaws.services.sqs.model.QueueAttributeName; import com.amazonaws.services.sqs.model.SetQueueAttributesRequest; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import java.util.*; public class VideoDetect { private static String sqsQueueName=null; private static String snsTopicName=null; private static String snsTopicArn = null; private static String roleArn= null; private static String sqsQueueUrl = null; private static String sqsQueueArn = null; private static String startJobId = null; private static String bucket = null; private static String video = null; private static AmazonSQS sqs=null; private static AmazonSNS sns=null; private static AmazonRekognition rek = null; private static NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); public static void main(String[] args) throws Exception { video = ""; bucket = ""; roleArn= ""; sns = AmazonSNSClientBuilder.defaultClient(); sqs= AmazonSQSClientBuilder.defaultClient(); rek = AmazonRekognitionClientBuilder.defaultClient(); CreateTopicandQueue(); //================================================= StartLabelDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetLabelDetectionResults(); //================================================= DeleteTopicandQueue(); System.out.println("Done!"); } static boolean GetSQSMessageSuccess() throws Exception { boolean success=false; System.out.println("Waiting for job: " + startJobId); //Poll queue for messages List<Message> messages=null; int dotLine=0; boolean jobFound=false; //loop until the job status is published. Ignore other messages in queue. do{ messages = sqs.receiveMessage(sqsQueueUrl).getMessages(); if (dotLine++<40){ System.out.print("."); }else{ System.out.println(); dotLine=0; } if (!messages.isEmpty()) { //Loop through messages received. for (Message message: messages) { String notification = message.getBody(); // Get status and job id from notification. ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found was " + operationJobId); // Found job. Get the results and display. if(operationJobId.asText().equals(startJobId)){ jobFound=true; System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")){ success=true; } else{ System.out.println("Video analysis failed"); } sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } else{ System.out.println("Job received was not job " + startJobId); //Delete unknown message. Consider moving message to dead letter queue sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } } } else { Thread.sleep(5000); } } while (!jobFound); System.out.println("Finished processing video"); return success; } private static void StartLabelDetection(String bucket, String video) throws Exception{ NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartLabelDetectionRequest req = new StartLabelDetectionRequest() .withVideo(new Video() .withS3Object(new S3Object() .withBucket(bucket) .withName(video))) .withMinConfidence(50F) .withJobTag("DetectingLabels") .withNotificationChannel(channel); StartLabelDetectionResult startLabelDetectionResult = rek.startLabelDetection(req); startJobId=startLabelDetectionResult.getJobId(); } private static void GetLabelDetectionResults() throws Exception{ int maxResults=10; String paginationToken=null; GetLabelDetectionResult labelDetectionResult=null; do { if (labelDetectionResult !=null){ paginationToken = labelDetectionResult.getNextToken(); } GetLabelDetectionRequest labelDetectionRequest= new GetLabelDetectionRequest() .withJobId(startJobId) .withSortBy(LabelDetectionSortBy.TIMESTAMP) .withMaxResults(maxResults) .withNextToken(paginationToken); labelDetectionResult = rek.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData=labelDetectionResult.getVideoMetadata(); System.out.println("Format: " + videoMetaData.getFormat()); System.out.println("Codec: " + videoMetaData.getCodec()); System.out.println("Duration: " + videoMetaData.getDurationMillis()); System.out.println("FrameRate: " + videoMetaData.getFrameRate()); //Show labels, confidence and detection times List<LabelDetection> detectedLabels= labelDetectionResult.getLabels(); for (LabelDetection detectedLabel: detectedLabels) { long seconds=detectedLabel.getTimestamp(); Label label=detectedLabel.getLabel(); System.out.println("Millisecond: " + Long.toString(seconds) + " "); System.out.println(" Label:" + label.getName()); System.out.println(" Confidence:" + detectedLabel.getLabel().getConfidence().toString()); List<Instance> instances = label.getInstances(); System.out.println(" Instances of " + label.getName()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.getConfidence().toString()); System.out.println(" Bounding box: " + instance.getBoundingBox().toString()); } } System.out.println(" Parent labels for " + label.getName() + ":"); List<Parent> parents = label.getParents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.getName()); } } System.out.println(); } } while (labelDetectionResult !=null && labelDetectionResult.getNextToken() != null); } // Creates an SNS topic and SQS queue. The queue is subscribed to the topic. static void CreateTopicandQueue() { //create a new SNS topic snsTopicName="AmazonRekognitionTopic" + Long.toString(System.currentTimeMillis()); CreateTopicRequest createTopicRequest = new CreateTopicRequest(snsTopicName); CreateTopicResult createTopicResult = sns.createTopic(createTopicRequest); snsTopicArn=createTopicResult.getTopicArn(); //Create a new SQS Queue sqsQueueName="AmazonRekognitionQueue" + Long.toString(System.currentTimeMillis()); final CreateQueueRequest createQueueRequest = new CreateQueueRequest(sqsQueueName); sqsQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl(); sqsQueueArn = sqs.getQueueAttributes(sqsQueueUrl, Arrays.asList("QueueArn")).getAttributes().get("QueueArn"); //Subscribe SQS queue to SNS topic String sqsSubscriptionArn = sns.subscribe(snsTopicArn, "sqs", sqsQueueArn).getSubscriptionArn(); // Authorize queue Policy policy = new Policy().withStatements( new Statement(Effect.Allow) .withPrincipals(Principal.AllUsers) .withActions(SQSActions.SendMessage) .withResources(new Resource(sqsQueueArn)) .withConditions(new Condition().withType("ArnEquals").withConditionKey("aws:SourceArn").withValues(snsTopicArn)) ); Map queueAttributes = new HashMap(); queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson()); sqs.setQueueAttributes(new SetQueueAttributesRequest(sqsQueueUrl, queueAttributes)); System.out.println("Topic arn: " + snsTopicArn); System.out.println("Queue arn: " + sqsQueueArn); System.out.println("Queue url: " + sqsQueueUrl); System.out.println("Queue sub arn: " + sqsSubscriptionArn ); } static void DeleteTopicandQueue() { if (sqs !=null) { sqs.deleteQueue(sqsQueueUrl); System.out.println("SQS queue deleted"); } if (sns!=null) { sns.deleteTopic(snsTopicArn); System.out.println("SNS topic deleted"); } } }
-
- Python
-
En la función
main
:-
reemplace
roleArn
por el ARN del rol de servicio de IAM que creó en el paso 7 de Para configurar Amazon Rekognition Video. -
Reemplace los valores de
bucket
yvideo
por el bucket y el nombre del archivo de vídeo que especificó en el paso 2. -
Sustituya el valor de
profile_name
en la línea que crea la sesión de Rekognition por el nombre de su perfil de desarrollador. -
También puede incluir criterios de filtrado en el parámetro de configuración. Por ejemplo, puede utilizar un
LabelsInclusionFilter
o unLabelsExclusionFilter
junto a una lista de los valores deseados. En el código que aparece a continuación, puede eliminar los comentarios de las seccionesFeatures
ySettings
y proporcionar sus propios valores para limitar los resultados devueltos solo a las etiquetas que le interesen. -
En la llamada a
GetLabelDetection
, puede proporcionar valores para los argumentosSortBy
yAggregateBy
. Para ordenar por tiempo, establezca el valor del parámetro de entradaSortBy
enTIMESTAMP
. Para ordenar por entidad, utilice el parámetro de entradaSortBy
con el valor que es adecuado para la operación que está realizando. Para agregar los resultados por marca de tiempo, defina el valor del parámetroAggregateBy
enTIMESTAMPS
. Para agregar por segmento de vídeo, utiliceSEGMENTS
.
## Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) import boto3 import json import sys import time class VideoDetect: jobId = '' roleArn = '' bucket = '' video = '' startJobId = '' sqsQueueUrl = '' snsTopicArn = '' processType = '' def __init__(self, role, bucket, video, client, rek, sqs, sns): self.roleArn = role self.bucket = bucket self.video = video self.client = client self.rek = rek self.sqs = sqs self.sns = sns def GetSQSMessageSuccess(self): jobFound = False succeeded = False dotLine = 0 while jobFound == False: sqsResponse = self.sqs.receive_message(QueueUrl=self.sqsQueueUrl, MessageAttributeNames=['ALL'], MaxNumberOfMessages=10) if sqsResponse: if 'Messages' not in sqsResponse: if dotLine < 40: print('.', end='') dotLine = dotLine + 1 else: print() dotLine = 0 sys.stdout.flush() time.sleep(5) continue for message in sqsResponse['Messages']: notification = json.loads(message['Body']) rekMessage = json.loads(notification['Message']) print(rekMessage['JobId']) print(rekMessage['Status']) if rekMessage['JobId'] == self.startJobId: print('Matching Job Found:' + rekMessage['JobId']) jobFound = True if (rekMessage['Status'] == 'SUCCEEDED'): succeeded = True self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) else: print("Job didn't match:" + str(rekMessage['JobId']) + ' : ' + self.startJobId) # Delete the unknown message. Consider sending to dead letter queue self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) return succeeded def StartLabelDetection(self): response = self.rek.start_label_detection(Video={'S3Object': {'Bucket': self.bucket, 'Name': self.video}}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}, MinConfidence=90, # Filtration options, uncomment and add desired labels to filter returned labels # Features=['GENERAL_LABELS'], # Settings={ # 'GeneralLabels': { # 'LabelInclusionFilters': ['Clothing'] # }} ) self.startJobId = response['JobId'] print('Start Job Id: ' + self.startJobId) def GetLabelDetectionResults(self): maxResults = 10 paginationToken = '' finished = False while finished == False: response = self.rek.get_label_detection(JobId=self.startJobId, MaxResults=maxResults, NextToken=paginationToken, SortBy='TIMESTAMP', AggregateBy="TIMESTAMPS") print('Codec: ' + response['VideoMetadata']['Codec']) print('Duration: ' + str(response['VideoMetadata']['DurationMillis'])) print('Format: ' + response['VideoMetadata']['Format']) print('Frame rate: ' + str(response['VideoMetadata']['FrameRate'])) print() for labelDetection in response['Labels']: label = labelDetection['Label'] print("Timestamp: " + str(labelDetection['Timestamp'])) print(" Label: " + label['Name']) print(" Confidence: " + str(label['Confidence'])) print(" Instances:") for instance in label['Instances']: print(" Confidence: " + str(instance['Confidence'])) print(" Bounding box") print(" Top: " + str(instance['BoundingBox']['Top'])) print(" Left: " + str(instance['BoundingBox']['Left'])) print(" Width: " + str(instance['BoundingBox']['Width'])) print(" Height: " + str(instance['BoundingBox']['Height'])) print() print() print("Parents:") for parent in label['Parents']: print(" " + parent['Name']) print("Aliases:") for alias in label['Aliases']: print(" " + alias['Name']) print("Categories:") for category in label['Categories']: print(" " + category['Name']) print("----------") print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def CreateTopicandQueue(self): millis = str(int(round(time.time() * 1000))) # Create SNS topic snsTopicName = "AmazonRekognitionExample" + millis topicResponse = self.sns.create_topic(Name=snsTopicName) self.snsTopicArn = topicResponse['TopicArn'] # create SQS queue sqsQueueName = "AmazonRekognitionQueue" + millis self.sqs.create_queue(QueueName=sqsQueueName) self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)['QueueUrl'] attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl, AttributeNames=['QueueArn'])['Attributes'] sqsQueueArn = attribs['QueueArn'] # Subscribe SQS queue to SNS topic self.sns.subscribe( TopicArn=self.snsTopicArn, Protocol='sqs', Endpoint=sqsQueueArn) # Authorize SNS to write SQS queue policy = """{{ "Version":"2012-10-17", "Statement":[ {{ "Sid":"MyPolicy", "Effect":"Allow", "Principal" : {{"AWS" : "*"}}, "Action":"SQS:SendMessage", "Resource": "{}", "Condition":{{ "ArnEquals":{{ "aws:SourceArn": "{}" }} }} }} ] }}""".format(sqsQueueArn, self.snsTopicArn) response = self.sqs.set_queue_attributes( QueueUrl=self.sqsQueueUrl, Attributes={ 'Policy': policy }) def DeleteTopicandQueue(self): self.sqs.delete_queue(QueueUrl=self.sqsQueueUrl) self.sns.delete_topic(TopicArn=self.snsTopicArn) def main(): roleArn = 'role-arn' bucket = 'bucket-name' video = 'video-name' session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') rek = boto3.client('rekognition') sqs = boto3.client('sqs') sns = boto3.client('sns') analyzer = VideoDetect(roleArn, bucket, video, client, rek, sqs, sns) analyzer.CreateTopicandQueue() analyzer.StartLabelDetection() if analyzer.GetSQSMessageSuccess() == True: analyzer.GetLabelDetectionResults() analyzer.DeleteTopicandQueue() if __name__ == "__main__": main()
-
- Node.Js
-
En el siguiente código de muestra:
-
Sustituya el valor de
REGION
por el nombre de la región operativa de su cuenta. -
Sustituya el valor de
bucket
por el nombre del bucket de Amazon S3 que contiene el archivo de vídeo. -
Sustituya el valor de
videoName
por el nombre del archivo de vídeo en su bucket de Amazon S3. -
Sustituya el valor de
profile_name
en la línea que crea la sesión de Rekognition por el nombre de su perfil de desarrollador. -
reemplace
roleArn
por el ARN del rol de servicio de IAM que creó en el paso 7 de Para configurar Amazon Rekognition Video.
import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand, SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand, DeleteMessageCommand } from "@aws-sdk/client-sqs"; import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-sdk/client-sns"; import { SQSClient } from "@aws-sdk/client-sqs"; import { SNSClient } from "@aws-sdk/client-sns"; import { RekognitionClient, StartLabelDetectionCommand, GetLabelDetectionCommand } from "@aws-sdk/client-rekognition"; import { stdout } from "process"; import {fromIni} from '@aws-sdk/credential-providers'; // Set the AWS Region. const REGION = "region-name"; //e.g. "us-east-1" const profileName = "profile-name" // Create SNS service object. const sqsClient = new SQSClient({ region: REGION, credentials: fromIni({profile: profileName,}), }); const snsClient = new SNSClient({ region: REGION, credentials: fromIni({profile: profileName,}), }); const rekClient = new RekognitionClient({region: REGION, credentials: fromIni({profile: profileName,}), }); // Set bucket and video variables const bucket = "bucket-name"; const videoName = "video-name"; const roleArn = "role-arn" var startJobId = "" var ts = Date.now(); const snsTopicName = "AmazonRekognitionExample" + ts; const snsTopicParams = {Name: snsTopicName} const sqsQueueName = "AmazonRekognitionQueue-" + ts; // Set the parameters const sqsParams = { QueueName: sqsQueueName, //SQS_QUEUE_URL Attributes: { DelaySeconds: "60", // Number of seconds delay. MessageRetentionPeriod: "86400", // Number of seconds delay. }, }; const createTopicandQueue = async () => { try { // Create SNS topic const topicResponse = await snsClient.send(new CreateTopicCommand(snsTopicParams)); const topicArn = topicResponse.TopicArn console.log("Success", topicResponse); // Create SQS Queue const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams)); console.log("Success", sqsResponse); const sqsQueueCommand = await sqsClient.send(new GetQueueUrlCommand({QueueName: sqsQueueName})) const sqsQueueUrl = sqsQueueCommand.QueueUrl const attribsResponse = await sqsClient.send(new GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']})) const attribs = attribsResponse.Attributes console.log(attribs) const queueArn = attribs.QueueArn // subscribe SQS queue to SNS topic const subscribed = await snsClient.send(new SubscribeCommand({TopicArn: topicArn, Protocol:'sqs', Endpoint: queueArn})) const policy = { Version: "2012-10-17", Statement: [ { Sid: "MyPolicy", Effect: "Allow", Principal: {AWS: "*"}, Action: "SQS:SendMessage", Resource: queueArn, Condition: { ArnEquals: { 'aws:SourceArn': topicArn } } } ] }; const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl: sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}})) console.log(response) console.log(sqsQueueUrl, topicArn) return [sqsQueueUrl, topicArn] } catch (err) { console.log("Error", err); } }; const startLabelDetection = async (roleArn, snsTopicArn) => { try { //Initiate label detection and update value of startJobId with returned Job ID const labelDetectionResponse = await rekClient.send(new StartLabelDetectionCommand({Video:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})); startJobId = labelDetectionResponse.JobId console.log(`JobID: ${startJobId}`) return startJobId } catch (err) { console.log("Error", err); } }; const getLabelDetectionResults = async(startJobId) => { console.log("Retrieving Label Detection results") // Set max results, paginationToken and finished will be updated depending on response values var maxResults = 10 var paginationToken = '' var finished = false // Begin retrieving label detection results while (finished == false){ var response = await rekClient.send(new GetLabelDetectionCommand({JobId: startJobId, MaxResults: maxResults, NextToken: paginationToken, SortBy:'TIMESTAMP'})) // Log metadata console.log(`Codec: ${response.VideoMetadata.Codec}`) console.log(`Duration: ${response.VideoMetadata.DurationMillis}`) console.log(`Format: ${response.VideoMetadata.Format}`) console.log(`Frame Rate: ${response.VideoMetadata.FrameRate}`) console.log() // For every detected label, log label, confidence, bounding box, and timestamp response.Labels.forEach(labelDetection => { var label = labelDetection.Label console.log(`Timestamp: ${labelDetection.Timestamp}`) console.log(`Label: ${label.Name}`) console.log(`Confidence: ${label.Confidence}`) console.log("Instances:") label.Instances.forEach(instance =>{ console.log(`Confidence: ${instance.Confidence}`) console.log("Bounding Box:") console.log(`Top: ${instance.Confidence}`) console.log(`Left: ${instance.Confidence}`) console.log(`Width: ${instance.Confidence}`) console.log(`Height: ${instance.Confidence}`) console.log() }) console.log() // Log parent if found console.log(" Parents:") label.Parents.forEach(parent =>{ console.log(` ${parent.Name}`) }) console.log() // Searh for pagination token, if found, set variable to next token if (String(response).includes("NextToken")){ paginationToken = response.NextToken }else{ finished = true } }) } } // Checks for status of job completion const getSQSMessageSuccess = async(sqsQueueUrl, startJobId) => { try { // Set job found and success status to false initially var jobFound = false var succeeded = false var dotLine = 0 // while not found, continue to poll for response while (jobFound == false){ var sqsReceivedResponse = await sqsClient.send(new ReceiveMessageCommand({QueueUrl:sqsQueueUrl, MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10})); if (sqsReceivedResponse){ var responseString = JSON.stringify(sqsReceivedResponse) if (!responseString.includes('Body')){ if (dotLine < 40) { console.log('.') dotLine = dotLine + 1 }else { console.log('') dotLine = 0 }; stdout.write('', () => { console.log(''); }); await new Promise(resolve => setTimeout(resolve, 5000)); continue } } // Once job found, log Job ID and return true if status is succeeded for (var message of sqsReceivedResponse.Messages){ console.log("Retrieved messages:") var notification = JSON.parse(message.Body) var rekMessage = JSON.parse(notification.Message) var messageJobId = rekMessage.JobId if (String(rekMessage.JobId).includes(String(startJobId))){ console.log('Matching job found:') console.log(rekMessage.JobId) jobFound = true console.log(rekMessage.Status) if (String(rekMessage.Status).includes(String("SUCCEEDED"))){ succeeded = true console.log("Job processing succeeded.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } }else{ console.log("Provided Job ID did not match returned ID.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } } } return succeeded } catch(err) { console.log("Error", err); } }; // Start label detection job, sent status notification, check for success status // Retrieve results if status is "SUCEEDED", delete notification queue and topic const runLabelDetectionAndGetResults = async () => { try { const sqsAndTopic = await createTopicandQueue(); const startLabelDetectionRes = await startLabelDetection(roleArn, sqsAndTopic[1]); const getSQSMessageStatus = await getSQSMessageSuccess(sqsAndTopic[0], startLabelDetectionRes) console.log(getSQSMessageSuccess) if (getSQSMessageSuccess){ console.log("Retrieving results:") const results = await getLabelDetectionResults(startLabelDetectionRes) } const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl: sqsAndTopic[0]})); const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn: sqsAndTopic[1]})); console.log("Successfully deleted.") } catch (err) { console.log("Error", err); } }; runLabelDetectionAndGetResults()
-
- Java V2
-
Este código se ha tomado del repositorio GitHub de ejemplos del SDK de documentación AWS. Consulte el ejemplo completo aquí
. import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; //snippet-end:[rekognition.java2.recognize_video_detect.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId =""; public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <bucket> <video> <queueUrl> <topicArn> <roleArn>\n\n" + "Where:\n" + " bucket - The name of the bucket in which the video is located (for example, (for example, myBucket). \n\n"+ " video - The name of the video (for example, people.mp4). \n\n" + " queueUrl- The URL of a SQS queue. \n\n" + " topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic. \n\n" + " roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use. \n\n" ; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_WEST_2) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } // snippet-start:[rekognition.java2.recognize_video_detect.main] public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy +" status is: "+status); Thread.sleep(1000); yy++; } System.out.println(startJobId +" status is: "+status); } catch(RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message: messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId)==0) { System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) GetResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else{ System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch(RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void GetResultsLabels(RekognitionClient rekClient) { int maxResults=10; String paginationToken=null; GetLabelDetectionResponse labelDetectionResult=null; try { do { if (labelDetectionResult !=null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest= GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData=labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels= labelDetectionResult.labels(); for (LabelDetection detectedLabel: detectedLabels) { long seconds=detectedLabel.timestamp(); Label label=detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult !=null && labelDetectionResult.nextToken() != null); } catch(RekognitionException e) { e.getMessage(); System.exit(1); } } // snippet-end:[rekognition.java2.recognize_video_detect.main] }
-
Cree y ejecute el código. La operación podría llevar algún tiempo. Una vez terminada, se muestra una lista de las etiquetas detectadas en el vídeo. Para obtener más información, consulte Detección de etiquetas en un vídeo.