Seleccione sus preferencias de cookies

Usamos cookies esenciales y herramientas similares que son necesarias para proporcionar nuestro sitio y nuestros servicios. Usamos cookies de rendimiento para recopilar estadísticas anónimas para que podamos entender cómo los clientes usan nuestro sitio y hacer mejoras. Las cookies esenciales no se pueden desactivar, pero puede hacer clic en “Personalizar” o “Rechazar” para rechazar las cookies de rendimiento.

Si está de acuerdo, AWS y los terceros aprobados también utilizarán cookies para proporcionar características útiles del sitio, recordar sus preferencias y mostrar contenido relevante, incluida publicidad relevante. Para aceptar o rechazar todas las cookies no esenciales, haga clic en “Aceptar” o “Rechazar”. Para elegir opciones más detalladas, haga clic en “Personalizar”.

¿Cómo usar la IA SageMaker CatBoost

Modo de enfoque
¿Cómo usar la IA SageMaker CatBoost - Amazon SageMaker AI

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Se puede utilizar CatBoost como un algoritmo integrado de Amazon SageMaker AI. En la siguiente sección se describe cómo usarlo CatBoost con el SDK de SageMaker Python. Para obtener información sobre cómo usarlo CatBoost desde la interfaz de usuario clásica de Amazon SageMaker Studio, consulteSageMaker JumpStart modelos preentrenados.

  • CatBoost Utilícelo como algoritmo integrado

    Utilice el algoritmo CatBoost integrado para crear un contenedor de CatBoost entrenamiento, como se muestra en el siguiente ejemplo de código. Puede detectar automáticamente el URI de la imagen del algoritmo CatBoost integrado mediante la image_uris.retrieve API de SageMaker IA (o la get_image_uri API si utiliza Amazon SageMaker Python SDK versión 2).

    Tras especificar el URI de la CatBoost imagen, puede utilizar el CatBoost contenedor para crear un estimador mediante la API SageMaker AI Estimator e iniciar un trabajo de formación. El algoritmo CatBoost integrado se ejecuta en modo script, pero el script de entrenamiento se proporciona automáticamente y no es necesario reemplazarlo. Si tiene una amplia experiencia en el uso del modo guion para crear un trabajo de SageMaker formación, puede incorporar sus propios guiones de CatBoost formación.

    from sagemaker import image_uris, model_uris, script_uris train_model_id, train_model_version, train_scope = "catboost-classification-model", "*", "training" training_instance_type = "ml.m5.xlarge" # Retrieve the docker image train_image_uri = image_uris.retrieve( region=None, framework=None, model_id=train_model_id, model_version=train_model_version, image_scope=train_scope, instance_type=training_instance_type ) # Retrieve the training script train_source_uri = script_uris.retrieve( model_id=train_model_id, model_version=train_model_version, script_scope=train_scope ) train_model_uri = model_uris.retrieve( model_id=train_model_id, model_version=train_model_version, model_scope=train_scope ) # Sample training data is available in this bucket training_data_bucket = f"jumpstart-cache-prod-{aws_region}" training_data_prefix = "training-datasets/tabular_multiclass/" training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/train" validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/validation" output_bucket = sess.default_bucket() output_prefix = "jumpstart-example-tabular-training" s3_output_location = f"s3://{output_bucket}/{output_prefix}/output" from sagemaker import hyperparameters # Retrieve the default hyperparameters for training the model hyperparameters = hyperparameters.retrieve_default( model_id=train_model_id, model_version=train_model_version ) # [Optional] Override default hyperparameters with custom values hyperparameters[ "iterations" ] = "500" print(hyperparameters) from sagemaker.estimator import Estimator from sagemaker.utils import name_from_base training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training") # Create SageMaker Estimator instance tabular_estimator = Estimator( role=aws_role, image_uri=train_image_uri, source_dir=train_source_uri, model_uri=train_model_uri, entry_point="transfer_learning.py", instance_count=1, instance_type=training_instance_type, max_run=360000, hyperparameters=hyperparameters, output_path=s3_output_location ) # Launch a SageMaker Training job by passing the S3 path of the training data tabular_estimator.fit( { "training": training_dataset_s3_path, "validation": validation_dataset_s3_path, }, logs=True, job_name=training_job_name )

    Para obtener más información sobre cómo configurarlo CatBoost como un algoritmo integrado, consulte los siguientes ejemplos de cuadernos.

PrivacidadTérminos del sitioPreferencias de cookies
© 2025, Amazon Web Services, Inc o sus afiliados. Todos los derechos reservados.