Cree su propio contenedor Docker con la biblioteca paralela de datos distribuidos de SageMaker IA - Amazon SageMaker AI

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Cree su propio contenedor Docker con la biblioteca paralela de datos distribuidos de SageMaker IA

Para crear tu propio contenedor Docker para entrenar y usar la biblioteca paralela de datos de SageMaker IA, debes incluir las dependencias correctas y los archivos binarios de las bibliotecas paralelas distribuidas por SageMaker IA en tu Dockerfile. En esta sección se proporcionan instrucciones sobre cómo crear un Dockerfile completo con el conjunto mínimo de dependencias para el entrenamiento distribuido en SageMaker IA mediante la biblioteca data parallel.

nota

Esta opción personalizada de Docker con la biblioteca paralela de datos de SageMaker IA en formato binario solo está disponible para PyTorch.

Para crear un Dockerfile con el kit de herramientas de SageMaker formación y la biblioteca data parallel
  1. Comience con una imagen de Docker de NVIDIA CUDA. Utilice las versiones para desarrolladores de cuDNN que contienen herramientas de desarrollo y tiempo de ejecución de CUDA (encabezados y bibliotecas) para compilar a partir del código fuente. PyTorch

    FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04
    sugerencia

    Las imágenes oficiales del contenedor de aprendizaje AWS profundo (DLC) se crean a partir de las imágenes base de NVIDIA CUDA. Si quieres usar las imágenes de DLC prediseñadas como referencia mientras sigues el resto de las instrucciones, consulta AWS Deep Learning Containers for PyTorch Dockerfiles.

  2. Agregue los siguientes argumentos para especificar las versiones y otros paquetes. PyTorch Además, indique las rutas de los buckets de Amazon S3 a la biblioteca paralela de datos de SageMaker IA y a otro software para utilizar AWS los recursos, como el complemento Amazon S3.

    Para utilizar versiones de bibliotecas de terceros distintas de las que se proporcionan en el siguiente ejemplo de código, le recomendamos que consulte los Dockerfiles oficiales de AWS Deep Learning Container PyTorch para encontrar versiones probadas, compatibles y adecuadas para su aplicación.

    URLs Para encontrar el SMDATAPARALLEL_BINARY argumento, consulte las tablas de consulta en. Marcos admitidos

    ARG PYTORCH_VERSION=1.10.2 ARG PYTHON_SHORT_VERSION=3.8 ARG EFA_VERSION=1.14.1 ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-linux_x86_64.whl ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl ARG CONDA_PREFIX="/opt/conda" ARG BRANCH_OFI=1.1.3-aws
  3. Configure las siguientes variables de entorno para crear correctamente los componentes de SageMaker entrenamiento y ejecutar la biblioteca data parallel. Estas variables se utilizan para los componentes en los pasos siguientes.

    # Set ENV variables required to build PyTorch ENV TORCH_CUDA_ARCH_LIST="7.0+PTX 8.0" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV NCCL_VERSION=2.10.3 # Add OpenMPI to the path. ENV PATH /opt/amazon/openmpi/bin:$PATH # Add Conda to path ENV PATH $CONDA_PREFIX/bin:$PATH # Set this enviroment variable for SageMaker AI to launch SMDDP correctly. ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main # Add enviroment variable for processes to be able to call fork() ENV RDMAV_FORK_SAFE=1 # Indicate the container type ENV DLC_CONTAINER_TYPE=training # Add EFA and SMDDP to LD library path ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/smdistributed/dataparallel/lib:$LD_LIBRARY_PATH" ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH
  4. Instale o actualice curl, wget y git para descargar y crear paquetes en los pasos siguientes.

    RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ curl \ wget \ git \ && rm -rf /var/lib/apt/lists/*
  5. Instale el software Elastic Fabric Adapter (EFA) para la comunicación de red de Amazon. EC2

    RUN DEBIAN_FRONTEND=noninteractive apt-get update RUN mkdir /tmp/efa \ && cd /tmp/efa \ && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-${EFA_VERSION}.tar.gz \ && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \ && cd aws-efa-installer \ && ./efa_installer.sh -y --skip-kmod -g \ && rm -rf /tmp/efa
  6. Instale Conda para gestionar la administración de paquetes.

    RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b -p $CONDA_PREFIX && \ rm ~/miniconda.sh && \ $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build pyyaml numpy ipython && \ $CONDA_PREFIX/bin/conda clean -ya
  7. Obtenga, cree e instale PyTorch y sus dependencias. Creamos PyTorch a partir del código fuente porque necesitamos tener el control de la versión NCCL para garantizar la compatibilidad con el complemento AWS OFI NCCL.

    1. Siguiendo los pasos del docker PyTorch oficial, instalamos las dependencias de compilación y configuramos ccache para acelerar la recompilación.

      RUN DEBIAN_FRONTEND=noninteractive \ apt-get install -y --no-install-recommends \ build-essential \ ca-certificates \ ccache \ cmake \ git \ libjpeg-dev \ libpng-dev \ && rm -rf /var/lib/apt/lists/* # Setup ccache RUN /usr/sbin/update-ccache-symlinks RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache
    2. Instala las dependencias comunes y PyTorchde Linux.

      # Common dependencies for PyTorch RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses # Linux specific dependency for PyTorch RUN conda install -c pytorch magma-cuda113
    3. Clona el PyTorch GitHubrepositorio.

      RUN --mount=type=cache,target=/opt/ccache \ cd / \ && git clone --recursive https://github.com/pytorch/pytorch -b v${PYTORCH_VERSION}
    4. Instale y cree una versión específica de NCCL. Para ello, sustituye el contenido PyTorch de la carpeta NCCL predeterminada (/pytorch/third_party/nccl) por la versión NCCL específica del repositorio de NVIDIA. La versión NCCL se configuró en el paso 3 de esta guía.

      RUN cd /pytorch/third_party/nccl \ && rm -rf nccl \ && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \ && cd nccl \ && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \ && make pkg.txz.build \ && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1
    5. Compile e instale. PyTorch Para completar este proceso se necesita por lo general algo más de una hora. Compilar con la versión NCCL descargada en un paso anterior.

      RUN cd /pytorch \ && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \ python setup.py install \ && rm -rf /pytorch
  8. Cree e instale el complemento OFI NCCL de AWS. Esto permite que libfabric sea compatible con la biblioteca paralela de datos de SageMaker IA.

    RUN DEBIAN_FRONTEND=noninteractive apt-get update \ && apt-get install -y --no-install-recommends \ autoconf \ automake \ libtool RUN mkdir /tmp/efa-ofi-nccl \ && cd /tmp/efa-ofi-nccl \ && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \ && cd aws-ofi-nccl \ && ./autogen.sh \ && ./configure --with-libfabric=/opt/amazon/efa \ --with-mpi=/opt/amazon/openmpi \ --with-cuda=/usr/local/cuda \ --with-nccl=$CONDA_PREFIX \ && make \ && make install \ && rm -rf /tmp/efa-ofi-nccl
  9. Compila e instala TorchVision.

    RUN pip install --no-cache-dir -U \ packaging \ mpi4py==3.0.3 RUN cd /tmp \ && git clone https://github.com/pytorch/vision.git -b v0.9.1 \ && cd vision \ && BUILD_VERSION="0.9.1+cu111" python setup.py install \ && cd /tmp \ && rm -rf vision
  10. Instale y configure OpenSSL. Se requiere OpenSSH para que MPI se comunique entre contenedores. Permita que OpenSSH se comunique con los contenedores sin necesidad de confirmación.

    RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* # Configure OpenSSH so that nodes can communicate with each other RUN mkdir -p /var/run/sshd && \ sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd RUN rm -rf /root/.ssh/ && \ mkdir -p /root/.ssh/ && \ ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \ cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \ && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config
  11. Instale el complemento PT S3 para acceder de manera eficiente a los conjuntos de datos de Amazon S3.

    RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU} RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/tls/certs/ca-bundle.crt
  12. Instale la biblioteca libboost. Este paquete es necesario para conectar en red la funcionalidad de E/S asíncrona de la biblioteca paralela de SageMaker datos de IA.

    WORKDIR / RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/boost_1_73_0.tar.gz/download -O boost_1_73_0.tar.gz \ && tar -xzf boost_1_73_0.tar.gz \ && cd boost_1_73_0 \ && ./bootstrap.sh \ && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC install || true \ && cd .. \ && rm -rf boost_1_73_0.tar.gz \ && rm -rf boost_1_73_0 \ && cd ${CONDA_PREFIX}/include/boost
  13. Instale las siguientes herramientas de SageMaker IA para la formación. PyTorch

    WORKDIR /root RUN pip install --no-cache-dir -U \ smclarify \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ sagemaker-pytorch-training
  14. Por último, instale el binario paralelo de datos de SageMaker IA y las dependencias restantes.

    RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ jq \ libhwloc-dev \ libnuma1 \ libnuma-dev \ libssl1.1 \ libtool \ hwloc \ && rm -rf /var/lib/apt/lists/* RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}
  15. Cuando termine de crear el Dockerfile, consulte Adaptación de su propio contenedor de formación para aprender a crear el contenedor de Docker, alojarlo en Amazon ECR y ejecutar un trabajo de formación con el SDK de Python. SageMaker

El siguiente código de ejemplo muestra un dockerfile completo tras combinar todos los bloques de código anteriores.

# This file creates a docker image with minimum dependencies to run SageMaker AI data parallel training FROM nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04 # Set appropiate versions and location for components ARG PYTORCH_VERSION=1.10.2 ARG PYTHON_SHORT_VERSION=3.8 ARG EFA_VERSION=1.14.1 ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/${PYTORCH_VERSION}/cu113/2022-02-18/smdistributed_dataparallel-1.4.0-cp38-cp38-linux_x86_64.whl ARG PT_S3_WHL_GPU=https://aws-s3-plugin.s3.us-west-2.amazonaws.com/binaries/0.0.1/1c3e69e/awsio-0.0.1-cp38-cp38-manylinux1_x86_64.whl ARG CONDA_PREFIX="/opt/conda" ARG BRANCH_OFI=1.1.3-aws # Set ENV variables required to build PyTorch ENV TORCH_CUDA_ARCH_LIST="3.7 5.0 7.0+PTX 8.0" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV NCCL_VERSION=2.10.3 # Add OpenMPI to the path. ENV PATH /opt/amazon/openmpi/bin:$PATH # Add Conda to path ENV PATH $CONDA_PREFIX/bin:$PATH # Set this enviroment variable for SageMaker AI to launch SMDDP correctly. ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main # Add enviroment variable for processes to be able to call fork() ENV RDMAV_FORK_SAFE=1 # Indicate the container type ENV DLC_CONTAINER_TYPE=training # Add EFA and SMDDP to LD library path ENV LD_LIBRARY_PATH="/opt/conda/lib/python${PYTHON_SHORT_VERSION}/site-packages/smdistributed/dataparallel/lib:$LD_LIBRARY_PATH" ENV LD_LIBRARY_PATH=/opt/amazon/efa/lib/:$LD_LIBRARY_PATH # Install basic dependencies to download and build other dependencies RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ curl \ wget \ git \ && rm -rf /var/lib/apt/lists/* # Install EFA. # This is required for SMDDP backend communication RUN DEBIAN_FRONTEND=noninteractive apt-get update RUN mkdir /tmp/efa \ && cd /tmp/efa \ && curl --silent -O https://efa-installer.amazonaws.com/aws-efa-installer-${EFA_VERSION}.tar.gz \ && tar -xf aws-efa-installer-${EFA_VERSION}.tar.gz \ && cd aws-efa-installer \ && ./efa_installer.sh -y --skip-kmod -g \ && rm -rf /tmp/efa # Install Conda RUN curl -fsSL -v -o ~/miniconda.sh -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ chmod +x ~/miniconda.sh && \ ~/miniconda.sh -b -p $CONDA_PREFIX && \ rm ~/miniconda.sh && \ $CONDA_PREFIX/bin/conda install -y python=${PYTHON_SHORT_VERSION} conda-build pyyaml numpy ipython && \ $CONDA_PREFIX/bin/conda clean -ya # Install PyTorch. # Start with dependencies listed in official PyTorch dockerfile # https://github.com/pytorch/pytorch/blob/master/Dockerfile RUN DEBIAN_FRONTEND=noninteractive \ apt-get install -y --no-install-recommends \ build-essential \ ca-certificates \ ccache \ cmake \ git \ libjpeg-dev \ libpng-dev && \ rm -rf /var/lib/apt/lists/* # Setup ccache RUN /usr/sbin/update-ccache-symlinks RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache # Common dependencies for PyTorch RUN conda install astunparse numpy ninja pyyaml mkl mkl-include setuptools cmake cffi typing_extensions future six requests dataclasses # Linux specific dependency for PyTorch RUN conda install -c pytorch magma-cuda113 # Clone PyTorch RUN --mount=type=cache,target=/opt/ccache \ cd / \ && git clone --recursive https://github.com/pytorch/pytorch -b v${PYTORCH_VERSION} # Note that we need to use the same NCCL version for PyTorch and OFI plugin. # To enforce that, install NCCL from source before building PT and OFI plugin. # Install NCCL. # Required for building OFI plugin (OFI requires NCCL's header files and library) RUN cd /pytorch/third_party/nccl \ && rm -rf nccl \ && git clone https://github.com/NVIDIA/nccl.git -b v${NCCL_VERSION}-1 \ && cd nccl \ && make -j64 src.build CUDA_HOME=/usr/local/cuda NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70 -gencode=arch=compute_80,code=sm_80" \ && make pkg.txz.build \ && tar -xvf build/pkg/txz/nccl_*.txz -C $CONDA_PREFIX --strip-components=1 # Build and install PyTorch. RUN cd /pytorch \ && CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \ python setup.py install \ && rm -rf /pytorch RUN ccache -C # Build and install OFI plugin. \ # It is required to use libfabric. RUN DEBIAN_FRONTEND=noninteractive apt-get update \ && apt-get install -y --no-install-recommends \ autoconf \ automake \ libtool RUN mkdir /tmp/efa-ofi-nccl \ && cd /tmp/efa-ofi-nccl \ && git clone https://github.com/aws/aws-ofi-nccl.git -b v${BRANCH_OFI} \ && cd aws-ofi-nccl \ && ./autogen.sh \ && ./configure --with-libfabric=/opt/amazon/efa \ --with-mpi=/opt/amazon/openmpi \ --with-cuda=/usr/local/cuda \ --with-nccl=$CONDA_PREFIX \ && make \ && make install \ && rm -rf /tmp/efa-ofi-nccl # Build and install Torchvision RUN pip install --no-cache-dir -U \ packaging \ mpi4py==3.0.3 RUN cd /tmp \ && git clone https://github.com/pytorch/vision.git -b v0.9.1 \ && cd vision \ && BUILD_VERSION="0.9.1+cu111" python setup.py install \ && cd /tmp \ && rm -rf vision # Install OpenSSH. # Required for MPI to communicate between containers, allow OpenSSH to talk to containers without asking for confirmation RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* # Configure OpenSSH so that nodes can communicate with each other RUN mkdir -p /var/run/sshd && \ sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd RUN rm -rf /root/.ssh/ && \ mkdir -p /root/.ssh/ && \ ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \ cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \ && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config # Install PT S3 plugin. # Required to efficiently access datasets in Amazon S3 RUN pip install --no-cache-dir -U ${PT_S3_WHL_GPU} RUN mkdir -p /etc/pki/tls/certs && cp /etc/ssl/certs/ca-certificates.crt /etc/pki/tls/certs/ca-bundle.crt # Install libboost from source. # This package is needed for smdataparallel functionality (for networking asynchronous IO). WORKDIR / RUN wget https://sourceforge.net/projects/boost/files/boost/1.73.0/boost_1_73_0.tar.gz/download -O boost_1_73_0.tar.gz \ && tar -xzf boost_1_73_0.tar.gz \ && cd boost_1_73_0 \ && ./bootstrap.sh \ && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC install || true \ && cd .. \ && rm -rf boost_1_73_0.tar.gz \ && rm -rf boost_1_73_0 \ && cd ${CONDA_PREFIX}/include/boost # Install SageMaker AI PyTorch training. WORKDIR /root RUN pip install --no-cache-dir -U \ smclarify \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ sagemaker-pytorch-training # Install SageMaker AI data parallel binary (SMDDP) # Start with dependencies RUN --mount=type=cache,id=apt-final,target=/var/cache/apt \ apt-get update && apt-get install -y --no-install-recommends \ jq \ libhwloc-dev \ libnuma1 \ libnuma-dev \ libssl1.1 \ libtool \ hwloc \ && rm -rf /var/lib/apt/lists/* # Install SMDDP RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY}
sugerencia

Si desea ampliar el Dockerfile personalizado para incorporar la biblioteca paralela de SageMaker modelos AI, consulte. Cree su propio contenedor Docker con la biblioteca paralela de modelos distribuidos SageMaker