Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.
Ejemplos de Amazon Bedrock Runtime que se utilizan SDK para Java 2.x
Los siguientes ejemplos de código muestran cómo realizar acciones e implementar escenarios comunes mediante Amazon Bedrock Runtime. AWS SDK for Java 2.x
Los escenarios son ejemplos de código que muestran cómo llevar a cabo una tarea específica a través de llamadas a varias funciones dentro del servicio o combinado con otros Servicios de AWS.
En cada ejemplo se incluye un enlace al código de origen completo, con instrucciones de configuración y ejecución del código en el contexto.
Temas
Escenarios
En el siguiente ejemplo de código se muestra cómo crear sitios de pruebas que interactúan con modelos fundacionales de Amazon Bedrock a través de diferentes modalidades.
- SDKpara Java 2.x
-
El sitio de pruebas del modelo fundacional (FM) de Java es una aplicación de muestra de Spring Boot que muestra cómo utilizar Amazon Bedrock con Java. En este ejemplo se muestra cómo los desarrolladores de Java pueden utilizar Amazon Bedrock para crear aplicaciones habilitadas para IA generativa. Puede probar los modelos fundacionales de Amazon Bedrock e interactuar con ellos mediante los tres sitios de pruebas siguientes:
-
Un sitio de pruebas de texto.
-
Un sitio de pruebas de chat.
-
Un sitio de pruebas de imágenes.
En el ejemplo también se enumeran y muestran los modelos fundacionales a los que tiene acceso y sus características. Para obtener el código fuente y las instrucciones de implementación, consulte el proyecto en GitHub
. Servicios utilizados en este ejemplo
Amazon Bedrock Runtime
-
AI21Laboratorios: Jurassic-2
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a AI21 Labs Jurassic-2 mediante Converse de Bedrock. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a AI21 Labs Jurassic-2, usando Converse de Bedrock. API
// Use the Converse API to send a text message to AI21 Labs Jurassic-2. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseResponse; import software.amazon.awssdk.services.bedrockruntime.model.Message; public class Converse { public static String converse() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Jurassic-2 Mid. var modelId = "ai21.j2-mid-v1"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); try { // Send the message with a basic inference configuration. ConverseResponse response = client.converse(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F))); // Retrieve the generated text from Bedrock's response object. var responseText = response.output().message().content().get(0).text(); System.out.println(responseText); return responseText; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converse(); } }
Envía un mensaje de texto a AI21 Labs Jurassic-2 utilizando Converse de Bedrock con el cliente Java asíncrono. API
// Use the Converse API to send a text message to AI21 Labs Jurassic-2 // with the async Java client. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; public class ConverseAsync { public static String converseAsync() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Jurassic-2 Mid. var modelId = "ai21.j2-mid-v1"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Send the message with a basic inference configuration. var request = client.converse(params -> params .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F)) ); // Prepare a future object to handle the asynchronous response. CompletableFuture<String> future = new CompletableFuture<>(); // Handle the response or error using the future object. request.whenComplete((response, error) -> { if (error == null) { // Extract the generated text from Bedrock's response object. String responseText = response.output().message().content().get(0).text(); future.complete(responseText); } else { future.completeExceptionally(error); } }); try { // Wait for the future object to complete and retrieve the generated text. String responseText = future.get(); System.out.println(responseText); return responseText; } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converseAsync(); } }
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a AI21 Labs Jurassic-2 mediante el modelo Invoke. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Usa el modelo Invoke API para enviar un mensaje de texto.
// Use the native inference API to send a text message to AI21 Labs Jurassic-2. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Jurassic-2 Mid. var modelId = "ai21.j2-mid-v1"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-jurassic2.html var nativeRequestTemplate = "{ \"prompt\": \"{{prompt}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/completions/0/data/text").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
Amazon Titan Image Generator
El siguiente ejemplo de código muestra cómo invocar Amazon Titan Image en Amazon Bedrock para generar una imagen.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Cree una imagen con Amazon Titan Image Generator.
// Create an image with the Amazon Titan Image Generator. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import java.math.BigInteger; import java.security.SecureRandom; import static com.example.bedrockruntime.libs.ImageTools.displayImage; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Image G1. var modelId = "amazon.titan-image-generator-v1"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-image.html var nativeRequestTemplate = """ { "taskType": "TEXT_IMAGE", "textToImageParams": { "text": "{{prompt}}" }, "imageGenerationConfig": { "seed": {{seed}} } }"""; // Define the prompt for the image generation. var prompt = "A stylized picture of a cute old steampunk robot"; // Get a random 31-bit seed for the image generation (max. 2,147,483,647). var seed = new BigInteger(31, new SecureRandom()); // Embed the prompt and seed in the model's native request payload. var nativeRequest = nativeRequestTemplate .replace("{{prompt}}", prompt) .replace("{{seed}}", seed.toString()); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated image data from the model's response. var base64ImageData = new JSONPointer("/images/0").queryFrom(responseBody).toString(); return base64ImageData; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { System.out.println("Generating image. This may take a few seconds..."); String base64ImageData = invokeModel(); displayImage(base64ImageData); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
Amazon Titan Text
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Amazon Titan Text con Converse API de Bedrock.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Amazon Titan Text con Converse API de Bedrock.
// Use the Converse API to send a text message to Amazon Titan Text. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseResponse; import software.amazon.awssdk.services.bedrockruntime.model.Message; public class Converse { public static String converse() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); try { // Send the message with a basic inference configuration. ConverseResponse response = client.converse(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F))); // Retrieve the generated text from Bedrock's response object. var responseText = response.output().message().content().get(0).text(); System.out.println(responseText); return responseText; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converse(); } }
Envíe un mensaje de texto a Amazon Titan Text mediante Converse de Bedrock API con el cliente Java asíncrono.
// Use the Converse API to send a text message to Amazon Titan Text // with the async Java client. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; public class ConverseAsync { public static String converseAsync() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Send the message with a basic inference configuration. var request = client.converse(params -> params .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F)) ); // Prepare a future object to handle the asynchronous response. CompletableFuture<String> future = new CompletableFuture<>(); // Handle the response or error using the future object. request.whenComplete((response, error) -> { if (error == null) { // Extract the generated text from Bedrock's response object. String responseText = response.output().message().content().get(0).text(); future.complete(responseText); } else { future.completeExceptionally(error); } }); try { // Wait for the future object to complete and retrieve the generated text. String responseText = future.get(); System.out.println(responseText); return responseText; } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converseAsync(); } }
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Amazon Titan Text mediante Converse de Bedrock API y cómo procesar el flujo de respuestas en tiempo real.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Amazon Titan Text con Converse de Bedrock API y procesa el flujo de respuestas en tiempo real.
// Use the Converse API to send a text message to Amazon Titan Text // and print the response stream. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseStreamResponseHandler; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.ExecutionException; public class ConverseStream { public static void main(String[] args) { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Create a handler to extract and print the response text in real-time. var responseStreamHandler = ConverseStreamResponseHandler.builder() .subscriber(ConverseStreamResponseHandler.Visitor.builder() .onContentBlockDelta(chunk -> { String responseText = chunk.delta().text(); System.out.print(responseText); }).build() ).onError(err -> System.err.printf("Can't invoke '%s': %s", modelId, err.getMessage()) ).build(); try { // Send the message with a basic inference configuration and attach the handler. client.converseStream(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F) ), responseStreamHandler).get(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); } } }
-
Para API obtener más información, consulte ConverseStreamla referencia.AWS SDK for Java 2.x API
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Amazon Titan Text mediante el modelo API Invoke.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Usa el modelo Invoke API para enviar un mensaje de texto.
// Use the native inference API to send a text message to Amazon Titan Text. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-text.html var nativeRequestTemplate = "{ \"inputText\": \"{{prompt}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/results/0/outputText").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a los modelos de Amazon Titan Text mediante el modelo API Invoke e imprimir el flujo de respuestas.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Utilice el modelo Invoke API para enviar un mensaje de texto y procesar el flujo de respuestas en tiempo real.
// Use the native inference API to send a text message to Amazon Titan Text // and print the response stream. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamRequest; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler; import java.util.concurrent.ExecutionException; import static software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler.Visitor; public class InvokeModelWithResponseStream { public static String invokeModelWithResponseStream() throws ExecutionException, InterruptedException { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Premier. var modelId = "amazon.titan-text-premier-v1:0"; // The InvokeModelWithResponseStream API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-text.html var nativeRequestTemplate = "{ \"inputText\": \"{{prompt}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); // Create a request with the model ID and the model's native request payload. var request = InvokeModelWithResponseStreamRequest.builder() .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) .build(); // Prepare a buffer to accumulate the generated response text. var completeResponseTextBuffer = new StringBuilder(); // Prepare a handler to extract, accumulate, and print the response text in real-time. var responseStreamHandler = InvokeModelWithResponseStreamResponseHandler.builder() .subscriber(Visitor.builder().onChunk(chunk -> { // Extract and print the text from the model's native response. var response = new JSONObject(chunk.bytes().asUtf8String()); var text = new JSONPointer("/outputText").queryFrom(response); System.out.print(text); // Append the text to the response text buffer. completeResponseTextBuffer.append(text); }).build()).build(); try { // Send the request and wait for the handler to process the response. client.invokeModelWithResponseStream(request, responseStreamHandler).get(); // Return the complete response text. return completeResponseTextBuffer.toString(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) throws ExecutionException, InterruptedException { invokeModelWithResponseStream(); } }
-
Para API obtener más información, consulte InvokeModelWithResponseStreamla AWS SDK for Java 2.x APIReferencia.
-
Incrustaciones de texto de Amazon Titan
En el siguiente ejemplo de código, se muestra cómo:
Comience a crear su primera incrustación.
Para crear incrustaciones, configure el número de dimensiones y la normalización (solo en la versión 2).
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Cree su primera incrustación con Titan Text Embeddings V2.
// Generate and print an embedding with Amazon Titan Text Embeddings. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Embeddings V2. var modelId = "amazon.titan-embed-text-v2:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html var nativeRequestTemplate = "{ \"inputText\": \"{{inputText}}\" }"; // The text to convert into an embedding. var inputText = "Please recommend books with a theme similar to the movie 'Inception'."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{inputText}}", inputText); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/embedding").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
Para crear incrustaciones, configure el número de dimensiones y la normalización (solo en la versión 2).
/** * Invoke Amazon Titan Text Embeddings V2 with additional inference parameters. * * @param inputText - The text to convert to an embedding. * @param dimensions - The number of dimensions the output embeddings should have. * Values accepted by the model: 256, 512, 1024. * @param normalize - A flag indicating whether or not to normalize the output embeddings. * @return The {@link JSONObject} representing the model's response. */ public static JSONObject invokeModel(String inputText, int dimensions, boolean normalize) { // Create a Bedrock Runtime client in the AWS Region of your choice. var client = BedrockRuntimeClient.builder() .region(Region.US_WEST_2) .build(); // Set the model ID, e.g., Titan Embed Text v2.0. var modelId = "amazon.titan-embed-text-v2:0"; // Create the request for the model. var nativeRequest = """ { "inputText": "%s", "dimensions": %d, "normalize": %b } """.formatted(inputText, dimensions, normalize); // Encode and send the request. var response = client.invokeModel(request -> { request.body(SdkBytes.fromUtf8String(nativeRequest)); request.modelId(modelId); }); // Decode the model's response. var modelResponse = new JSONObject(response.body().asUtf8String()); // Extract and print the generated embedding and the input text token count. var embedding = modelResponse.getJSONArray("embedding"); var inputTokenCount = modelResponse.getBigInteger("inputTextTokenCount"); System.out.println("Embedding: " + embedding); System.out.println("\nInput token count: " + inputTokenCount); // Return the model's native response. return modelResponse; }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
Anthropic Claude
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Anthropic Claude, utilizando Converse de Bedrock. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Anthropic Claude, usando Converse de Bedrock. API
// Use the Converse API to send a text message to Anthropic Claude. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseResponse; import software.amazon.awssdk.services.bedrockruntime.model.Message; public class Converse { public static String converse() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); try { // Send the message with a basic inference configuration. ConverseResponse response = client.converse(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F))); // Retrieve the generated text from Bedrock's response object. var responseText = response.output().message().content().get(0).text(); System.out.println(responseText); return responseText; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converse(); } }
Envía un mensaje de texto a Anthropic Claude utilizando Converse API de Bedrock con el cliente Java asíncrono.
// Use the Converse API to send a text message to Anthropic Claude // with the async Java client. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; public class ConverseAsync { public static String converseAsync() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Send the message with a basic inference configuration. var request = client.converse(params -> params .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F)) ); // Prepare a future object to handle the asynchronous response. CompletableFuture<String> future = new CompletableFuture<>(); // Handle the response or error using the future object. request.whenComplete((response, error) -> { if (error == null) { // Extract the generated text from Bedrock's response object. String responseText = response.output().message().content().get(0).text(); future.complete(responseText); } else { future.completeExceptionally(error); } }); try { // Wait for the future object to complete and retrieve the generated text. String responseText = future.get(); System.out.println(responseText); return responseText; } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converseAsync(); } }
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Anthropic Claude mediante Converse de Bedrock API y procesar el flujo de respuestas en tiempo real.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Anthropic Claude con Converse de Bedrock API y procesa el flujo de respuestas en tiempo real.
// Use the Converse API to send a text message to Anthropic Claude // and print the response stream. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseStreamResponseHandler; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.ExecutionException; public class ConverseStream { public static void main(String[] args) { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Create a handler to extract and print the response text in real-time. var responseStreamHandler = ConverseStreamResponseHandler.builder() .subscriber(ConverseStreamResponseHandler.Visitor.builder() .onContentBlockDelta(chunk -> { String responseText = chunk.delta().text(); System.out.print(responseText); }).build() ).onError(err -> System.err.printf("Can't invoke '%s': %s", modelId, err.getMessage()) ).build(); try { // Send the message with a basic inference configuration and attach the handler. client.converseStream(request -> request.modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F) ), responseStreamHandler).get(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); } } }
-
Para obtener API más información, consulte la Referencia ConverseStream.AWS SDK for Java 2.x API
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Anthropic Claude mediante el modelo Invoke. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Usa el modelo Invoke API para enviar un mensaje de texto.
// Use the native inference API to send a text message to Anthropic Claude. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html var nativeRequestTemplate = """ { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 512, "temperature": 0.5, "messages": [{ "role": "user", "content": "{{prompt}}" }] }"""; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/content/0/text").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a los modelos Anthropic Claude, utilizando el modelo InvokeAPI, e imprimir el flujo de respuesta.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Utilice el modelo Invoke API para enviar un mensaje de texto y procesar el flujo de respuestas en tiempo real.
// Use the native inference API to send a text message to Anthropic Claude // and print the response stream. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamRequest; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler; import java.util.Objects; import java.util.concurrent.ExecutionException; import static software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler.Visitor; public class InvokeModelWithResponseStream { public static String invokeModelWithResponseStream() throws ExecutionException, InterruptedException { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Claude 3 Haiku. var modelId = "anthropic.claude-3-haiku-20240307-v1:0"; // The InvokeModelWithResponseStream API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html var nativeRequestTemplate = """ { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 512, "temperature": 0.5, "messages": [{ "role": "user", "content": "{{prompt}}" }] }"""; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); // Create a request with the model ID and the model's native request payload. var request = InvokeModelWithResponseStreamRequest.builder() .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) .build(); // Prepare a buffer to accumulate the generated response text. var completeResponseTextBuffer = new StringBuilder(); // Prepare a handler to extract, accumulate, and print the response text in real-time. var responseStreamHandler = InvokeModelWithResponseStreamResponseHandler.builder() .subscriber(Visitor.builder().onChunk(chunk -> { var response = new JSONObject(chunk.bytes().asUtf8String()); // Extract and print the text from the content blocks. if (Objects.equals(response.getString("type"), "content_block_delta")) { var text = new JSONPointer("/delta/text").queryFrom(response); System.out.print(text); // Append the text to the response text buffer. completeResponseTextBuffer.append(text); } }).build()).build(); try { // Send the request and wait for the handler to process the response. client.invokeModelWithResponseStream(request, responseStreamHandler).get(); // Return the complete response text. return completeResponseTextBuffer.toString(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) throws ExecutionException, InterruptedException { invokeModelWithResponseStream(); } }
-
Para API obtener más información, consulte InvokeModelWithResponseStreamla AWS SDK for Java 2.x APIReferencia.
-
Cohere Command
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Cohere Command mediante Converse de Bedrock. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Cohere Command, usando Converse de Bedrock. API
// Use the Converse API to send a text message to Cohere Command. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseResponse; import software.amazon.awssdk.services.bedrockruntime.model.Message; public class Converse { public static String converse() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); try { // Send the message with a basic inference configuration. ConverseResponse response = client.converse(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F))); // Retrieve the generated text from Bedrock's response object. var responseText = response.output().message().content().get(0).text(); System.out.println(responseText); return responseText; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converse(); } }
Envía un mensaje de texto a Cohere Command utilizando Converse API de Bedrock con el cliente Java asíncrono.
// Use the Converse API to send a text message to Cohere Command // with the async Java client. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; public class ConverseAsync { public static String converseAsync() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Send the message with a basic inference configuration. var request = client.converse(params -> params .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F)) ); // Prepare a future object to handle the asynchronous response. CompletableFuture<String> future = new CompletableFuture<>(); // Handle the response or error using the future object. request.whenComplete((response, error) -> { if (error == null) { // Extract the generated text from Bedrock's response object. String responseText = response.output().message().content().get(0).text(); future.complete(responseText); } else { future.completeExceptionally(error); } }); try { // Wait for the future object to complete and retrieve the generated text. String responseText = future.get(); System.out.println(responseText); return responseText; } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converseAsync(); } }
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Cohere Command mediante Converse de Bedrock API y procesar el flujo de respuestas en tiempo real.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Cohere Command con Converse de Bedrock API y procesa el flujo de respuestas en tiempo real.
// Use the Converse API to send a text message to Cohere Command // and print the response stream. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseStreamResponseHandler; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.ExecutionException; public class ConverseStream { public static void main(String[] args) { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Create a handler to extract and print the response text in real-time. var responseStreamHandler = ConverseStreamResponseHandler.builder() .subscriber(ConverseStreamResponseHandler.Visitor.builder() .onContentBlockDelta(chunk -> { String responseText = chunk.delta().text(); System.out.print(responseText); }).build() ).onError(err -> System.err.printf("Can't invoke '%s': %s", modelId, err.getMessage()) ).build(); try { // Send the message with a basic inference configuration and attach the handler. client.converseStream(request -> request.modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F) ), responseStreamHandler).get(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); } } }
-
Para obtener API más información, consulte la Referencia ConverseStream.AWS SDK for Java 2.x API
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Cohere Command R y R+ mediante el modelo Invoke. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Usa el modelo Invoke API para enviar un mensaje de texto.
// Use the native inference API to send a text message to Cohere Command R. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class Command_R_InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command-r-plus.html var nativeRequestTemplate = "{ \"message\": \"{{prompt}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/text").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Cohere Command mediante el modelo Invoke. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Usa el modelo Invoke API para enviar un mensaje de texto.
// Use the native inference API to send a text message to Cohere Command. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class Command_InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Command Light. var modelId = "cohere.command-light-text-v14"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command.html var nativeRequestTemplate = "{ \"prompt\": \"{{prompt}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/generations/0/text").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto al comando Cohere mediante el modelo Invoke API con un flujo de respuesta.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Utilice el modelo Invoke API para enviar un mensaje de texto y procesar el flujo de respuestas en tiempo real.
// Use the native inference API to send a text message to Cohere Command R // and print the response stream. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamRequest; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler; import java.util.concurrent.ExecutionException; import static software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler.Visitor; public class Command_R_InvokeModelWithResponseStream { public static String invokeModelWithResponseStream() throws ExecutionException, InterruptedException { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Command R. var modelId = "cohere.command-r-v1:0"; // The InvokeModelWithResponseStream API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command-r-plus.html var nativeRequestTemplate = "{ \"message\": \"{{prompt}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); // Create a request with the model ID and the model's native request payload. var request = InvokeModelWithResponseStreamRequest.builder() .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) .build(); // Prepare a buffer to accumulate the generated response text. var completeResponseTextBuffer = new StringBuilder(); // Prepare a handler to extract, accumulate, and print the response text in real-time. var responseStreamHandler = InvokeModelWithResponseStreamResponseHandler.builder() .subscriber(Visitor.builder().onChunk(chunk -> { // Extract and print the text from the model's native response. var response = new JSONObject(chunk.bytes().asUtf8String()); var text = new JSONPointer("/text").queryFrom(response); System.out.print(text); // Append the text to the response text buffer. completeResponseTextBuffer.append(text); }).build()).build(); try { // Send the request and wait for the handler to process the response. client.invokeModelWithResponseStream(request, responseStreamHandler).get(); // Return the complete response text. return completeResponseTextBuffer.toString(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) throws ExecutionException, InterruptedException { invokeModelWithResponseStream(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Cohere Command mediante el modelo Invoke API con un flujo de respuesta.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Utilice el modelo Invoke API para enviar un mensaje de texto y procesar el flujo de respuestas en tiempo real.
// Use the native inference API to send a text message to Cohere Command // and print the response stream. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamRequest; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler; import java.util.concurrent.ExecutionException; import static software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler.Visitor; public class Command_InvokeModelWithResponseStream { public static String invokeModelWithResponseStream() throws ExecutionException, InterruptedException { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Command Light. var modelId = "cohere.command-light-text-v14"; // The InvokeModelWithResponseStream API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-cohere-command.html var nativeRequestTemplate = "{ \"prompt\": \"{{prompt}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{prompt}}", prompt); // Create a request with the model ID and the model's native request payload. var request = InvokeModelWithResponseStreamRequest.builder() .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) .build(); // Prepare a buffer to accumulate the generated response text. var completeResponseTextBuffer = new StringBuilder(); // Prepare a handler to extract, accumulate, and print the response text in real-time. var responseStreamHandler = InvokeModelWithResponseStreamResponseHandler.builder() .subscriber(Visitor.builder().onChunk(chunk -> { // Extract and print the text from the model's native response. var response = new JSONObject(chunk.bytes().asUtf8String()); var text = new JSONPointer("/generations/0/text").queryFrom(response); System.out.print(text); // Append the text to the response text buffer. completeResponseTextBuffer.append(text); }).build()).build(); try { // Send the request and wait for the handler to process the response. client.invokeModelWithResponseStream(request, responseStreamHandler).get(); // Return the complete response text. return completeResponseTextBuffer.toString(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) throws ExecutionException, InterruptedException { invokeModelWithResponseStream(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
Meta Llama
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Meta Llama, utilizando Converse API de Bedrock.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Meta Llama, usando Converse API de Bedrock.
// Use the Converse API to send a text message to Meta Llama. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseResponse; import software.amazon.awssdk.services.bedrockruntime.model.Message; public class Converse { public static String converse() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Llama 3 8b Instruct. var modelId = "meta.llama3-8b-instruct-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); try { // Send the message with a basic inference configuration. ConverseResponse response = client.converse(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F))); // Retrieve the generated text from Bedrock's response object. var responseText = response.output().message().content().get(0).text(); System.out.println(responseText); return responseText; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converse(); } }
Envía un mensaje de texto a Meta Llama usando Converse de Bedrock API con el cliente Java asíncrono.
// Use the Converse API to send a text message to Meta Llama // with the async Java client. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; public class ConverseAsync { public static String converseAsync() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Llama 3 8b Instruct. var modelId = "meta.llama3-8b-instruct-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Send the message with a basic inference configuration. var request = client.converse(params -> params .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F)) ); // Prepare a future object to handle the asynchronous response. CompletableFuture<String> future = new CompletableFuture<>(); // Handle the response or error using the future object. request.whenComplete((response, error) -> { if (error == null) { // Extract the generated text from Bedrock's response object. String responseText = response.output().message().content().get(0).text(); future.complete(responseText); } else { future.completeExceptionally(error); } }); try { // Wait for the future object to complete and retrieve the generated text. String responseText = future.get(); System.out.println(responseText); return responseText; } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converseAsync(); } }
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Meta Llama utilizando Converse de Bedrock API y procesar el flujo de respuestas en tiempo real.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Meta Llama con Converse de Bedrock API y procesa el flujo de respuestas en tiempo real.
// Use the Converse API to send a text message to Meta Llama // and print the response stream. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseStreamResponseHandler; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.ExecutionException; public class ConverseStream { public static void main(String[] args) { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Llama 3 8b Instruct. var modelId = "meta.llama3-8b-instruct-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Create a handler to extract and print the response text in real-time. var responseStreamHandler = ConverseStreamResponseHandler.builder() .subscriber(ConverseStreamResponseHandler.Visitor.builder() .onContentBlockDelta(chunk -> { String responseText = chunk.delta().text(); System.out.print(responseText); }).build() ).onError(err -> System.err.printf("Can't invoke '%s': %s", modelId, err.getMessage()) ).build(); try { // Send the message with a basic inference configuration and attach the handler. client.converseStream(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F) ), responseStreamHandler).get(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); } } }
-
Para API obtener más información, consulte ConverseStreamla Referencia.AWS SDK for Java 2.x API
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Meta Llama 3, utilizando el modelo API Invoke.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Usa el modelo Invoke API para enviar un mensaje de texto.
// Use the native inference API to send a text message to Meta Llama 3. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class Llama3_InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_WEST_2) .build(); // Set the model ID, e.g., Llama 3 70b Instruct. var modelId = "meta.llama3-70b-instruct-v1:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-meta.html var nativeRequestTemplate = "{ \"prompt\": \"{{instruction}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Llama 3's instruction format. var instruction = ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\\n" + "{{prompt}} <|eot_id|>\\n" + "<|start_header_id|>assistant<|end_header_id|>\\n" ).replace("{{prompt}}", prompt); // Embed the instruction in the the native request payload. var nativeRequest = nativeRequestTemplate.replace("{{instruction}}", instruction); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/generation").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Meta Llama 3, utilizando el modelo InvokeAPI, e imprimir el flujo de respuesta.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Utilice el modelo Invoke API para enviar un mensaje de texto y procesar el flujo de respuestas en tiempo real.
// Use the native inference API to send a text message to Meta Llama 3 // and print the response stream. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamRequest; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler; import java.util.concurrent.ExecutionException; import static software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler.Visitor; public class Llama3_InvokeModelWithResponseStream { public static String invokeModelWithResponseStream() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_WEST_2) .build(); // Set the model ID, e.g., Llama 3 70b Instruct. var modelId = "meta.llama3-70b-instruct-v1:0"; // The InvokeModelWithResponseStream API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-meta.html var nativeRequestTemplate = "{ \"prompt\": \"{{instruction}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Llama 3's instruction format. var instruction = ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\\n" + "{{prompt}} <|eot_id|>\\n" + "<|start_header_id|>assistant<|end_header_id|>\\n" ).replace("{{prompt}}", prompt); // Embed the instruction in the the native request payload. var nativeRequest = nativeRequestTemplate.replace("{{instruction}}", instruction); // Create a request with the model ID and the model's native request payload. var request = InvokeModelWithResponseStreamRequest.builder() .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) .build(); // Prepare a buffer to accumulate the generated response text. var completeResponseTextBuffer = new StringBuilder(); // Prepare a handler to extract, accumulate, and print the response text in real-time. var responseStreamHandler = InvokeModelWithResponseStreamResponseHandler.builder() .subscriber(Visitor.builder().onChunk(chunk -> { // Extract and print the text from the model's native response. var response = new JSONObject(chunk.bytes().asUtf8String()); var text = new JSONPointer("/generation").queryFrom(response); System.out.print(text); // Append the text to the response text buffer. completeResponseTextBuffer.append(text); }).build()).build(); try { // Send the request and wait for the handler to process the response. client.invokeModelWithResponseStream(request, responseStreamHandler).get(); // Return the complete response text. return completeResponseTextBuffer.toString(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) throws ExecutionException, InterruptedException { invokeModelWithResponseStream(); } }
-
Para API obtener más información, consulte InvokeModelWithResponseStreamla AWS SDK for Java 2.x APIReferencia.
-
Mistral AI
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Mistral con Converse de Bedrock. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Mistral, usando Converse de Bedrock. API
// Use the Converse API to send a text message to Mistral. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseResponse; import software.amazon.awssdk.services.bedrockruntime.model.Message; public class Converse { public static String converse() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); try { // Send the message with a basic inference configuration. ConverseResponse response = client.converse(request -> request .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F))); // Retrieve the generated text from Bedrock's response object. var responseText = response.output().message().content().get(0).text(); System.out.println(responseText); return responseText; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converse(); } }
Envía un mensaje de texto a Mistral utilizando Converse de Bedrock con el cliente Java asíncrono. API
// Use the Converse API to send a text message to Mistral // with the async Java client. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.CompletableFuture; import java.util.concurrent.ExecutionException; public class ConverseAsync { public static String converseAsync() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Send the message with a basic inference configuration. var request = client.converse(params -> params .modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F)) ); // Prepare a future object to handle the asynchronous response. CompletableFuture<String> future = new CompletableFuture<>(); // Handle the response or error using the future object. request.whenComplete((response, error) -> { if (error == null) { // Extract the generated text from Bedrock's response object. String responseText = response.output().message().content().get(0).text(); future.complete(responseText); } else { future.completeExceptionally(error); } }); try { // Wait for the future object to complete and retrieve the generated text. String responseText = future.get(); System.out.println(responseText); return responseText; } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { converseAsync(); } }
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a Mistral mediante Converse de Bedrock API y procesar el flujo de respuestas en tiempo real.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Envía un mensaje de texto a Mistral con Converse de Bedrock API y procesa el flujo de respuestas en tiempo real.
// Use the Converse API to send a text message to Mistral // and print the response stream. import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.ContentBlock; import software.amazon.awssdk.services.bedrockruntime.model.ConversationRole; import software.amazon.awssdk.services.bedrockruntime.model.ConverseStreamResponseHandler; import software.amazon.awssdk.services.bedrockruntime.model.Message; import java.util.concurrent.ExecutionException; public class ConverseStream { public static void main(String[] args) { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // Create the input text and embed it in a message object with the user role. var inputText = "Describe the purpose of a 'hello world' program in one line."; var message = Message.builder() .content(ContentBlock.fromText(inputText)) .role(ConversationRole.USER) .build(); // Create a handler to extract and print the response text in real-time. var responseStreamHandler = ConverseStreamResponseHandler.builder() .subscriber(ConverseStreamResponseHandler.Visitor.builder() .onContentBlockDelta(chunk -> { String responseText = chunk.delta().text(); System.out.print(responseText); }).build() ).onError(err -> System.err.printf("Can't invoke '%s': %s", modelId, err.getMessage()) ).build(); try { // Send the message with a basic inference configuration and attach the handler. client.converseStream(request -> request.modelId(modelId) .messages(message) .inferenceConfig(config -> config .maxTokens(512) .temperature(0.5F) .topP(0.9F) ), responseStreamHandler).get(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); } } }
-
Para obtener API más información, consulte la Referencia. ConverseStreamAWS SDK for Java 2.x API
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a los modelos Mistral mediante el modelo Invoke. API
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Usa el modelo Invoke API para enviar un mensaje de texto.
// Use the native inference API to send a text message to Mistral. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral-text-completion.html var nativeRequestTemplate = "{ \"prompt\": \"{{instruction}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Mistral's instruction format. var instruction = "<s>[INST] {{prompt}} [/INST]\\n".replace("{{prompt}}", prompt); // Embed the instruction in the the native request payload. var nativeRequest = nativeRequestTemplate.replace("{{instruction}}", instruction); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/outputs/0/text").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-
El siguiente ejemplo de código muestra cómo enviar un mensaje de texto a los modelos Mistral AI, utilizando el modelo InvokeAPI, e imprimir el flujo de respuesta.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Utilice el modelo Invoke API para enviar un mensaje de texto y procesar el flujo de respuestas en tiempo real.
// Use the native inference API to send a text message to Mistral // and print the response stream. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeAsyncClient; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamRequest; import software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler; import java.util.concurrent.ExecutionException; import static software.amazon.awssdk.services.bedrockruntime.model.InvokeModelWithResponseStreamResponseHandler.Visitor; public class InvokeModelWithResponseStream { public static String invokeModelWithResponseStream() throws ExecutionException, InterruptedException { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeAsyncClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Mistral Large. var modelId = "mistral.mistral-large-2402-v1:0"; // The InvokeModelWithResponseStream API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-mistral-text-completion.html var nativeRequestTemplate = "{ \"prompt\": \"{{instruction}}\" }"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Mistral's instruction format. var instruction = "<s>[INST] {{prompt}} [/INST]\\n".replace("{{prompt}}", prompt); // Embed the instruction in the the native request payload. var nativeRequest = nativeRequestTemplate.replace("{{instruction}}", instruction); // Create a request with the model ID and the model's native request payload. var request = InvokeModelWithResponseStreamRequest.builder() .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) .build(); // Prepare a buffer to accumulate the generated response text. var completeResponseTextBuffer = new StringBuilder(); // Prepare a handler to extract, accumulate, and print the response text in real-time. var responseStreamHandler = InvokeModelWithResponseStreamResponseHandler.builder() .subscriber(Visitor.builder().onChunk(chunk -> { // Extract and print the text from the model's native response. var response = new JSONObject(chunk.bytes().asUtf8String()); var text = new JSONPointer("/outputs/0/text").queryFrom(response); System.out.print(text); // Append the text to the response text buffer. completeResponseTextBuffer.append(text); }).build()).build(); try { // Send the request and wait for the handler to process the response. client.invokeModelWithResponseStream(request, responseStreamHandler).get(); // Return the complete response text. return completeResponseTextBuffer.toString(); } catch (ExecutionException | InterruptedException e) { System.err.printf("Can't invoke '%s': %s", modelId, e.getCause().getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) throws ExecutionException, InterruptedException { invokeModelWithResponseStream(); } }
-
Para API obtener más información, consulte InvokeModelWithResponseStreamla AWS SDK for Java 2.x APIReferencia.
-
Stable Diffusion
El siguiente ejemplo de código muestra cómo invocar Stability.ai Stable Diffusion XL en Amazon Bedrock para generar una imagen.
- SDKpara Java 2.x
-
nota
Hay más información. GitHub Busque el ejemplo completo y aprenda a configurar y ejecutar en el Repositorio de ejemplos de código de AWS
. Cree una imagen con Stable Diffusion.
// Create an image with Stable Diffusion. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; import java.math.BigInteger; import java.security.SecureRandom; import static com.example.bedrockruntime.libs.ImageTools.displayImage; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Stable Diffusion XL v1. var modelId = "stability.stable-diffusion-xl-v1"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-diffusion-1-0-text-image.html var nativeRequestTemplate = """ { "text_prompts": [{ "text": "{{prompt}}" }], "style_preset": "{{style}}", "seed": {{seed}} }"""; // Define the prompt for the image generation. var prompt = "A stylized picture of a cute old steampunk robot"; // Get a random 32-bit seed for the image generation (max. 4,294,967,295). var seed = new BigInteger(31, new SecureRandom()); // Choose a style preset. var style = "cinematic"; // Embed the prompt, seed, and style in the model's native request payload. String nativeRequest = nativeRequestTemplate .replace("{{prompt}}", prompt) .replace("{{seed}}", seed.toString()) .replace("{{style}}", style); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated image data from the model's response. var base64ImageData = new JSONPointer("/artifacts/0/base64") .queryFrom(responseBody) .toString(); return base64ImageData; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { System.out.println("Generating image. This may take a few seconds..."); String base64ImageData = invokeModel(); displayImage(base64ImageData); } }
-
Para API obtener más información, consulte InvokeModella AWS SDK for Java 2.x APIReferencia.
-