Amazon Forecast is no longer available to new customers. Existing customers of
Amazon Forecast can continue to use the service as normal.
Learn more"
Enabling Predictor
Monitoring
You can enable predictor monitoring when you create the predictor, or you can
enable it for an existing predictor.
Predictor monitoring is only available for AutoPredictors.
You can upgrade existing legacy predictors to AutoPredictor. See Upgrading to AutoPredictor.
Enabling Predictor
Monitoring for a New Predictor
You can enable predictor monitoring for a new predictor with the console, AWS CLI, AWS SDKs, and the CreateAutoPredictor operation.
- Console
-
To enable Predictor
monitoring
Sign in to the AWS Management Console and open the Amazon Forecast console at https://console.aws.amazon.com/forecast/.
-
From Dataset groups, choose your dataset
group.
-
In the navigation pane, choose
Predictors.
-
Choose Train new predictor.
-
In the Predictor configuration section,
choose Enable monitoring.
-
Provide values for the following mandatory fields:
-
Name - a unique
predictor name.
-
Forecast frequency -
the granularity of your forecasts.
-
Forecast horizon -
The number of time steps to forecast.
-
Choose Start to create an auto predictor with monitoring enabled. You’ll see monitoring results as you use the predictor to generate forecasts and then import more data.
- Python
-
To enable predictor monitoring for a new predictor with the SDK for Python (Boto3), use the create_auto_predictor
method and provide a monitor name in the MonitoringConfig
.
The following
code creates an auto predictor that makes predictions for 24 (ForecastHorizon
) days (ForecastFrequency
) in the future, and specifies
MyPredictorMonitor
as the MonitorName
. After you generate a forecast and then import more data, you can view the results of predictor monitoring. For
more information about retrieving results, see Viewing Monitoring Results.
For information on
required and optional parameters for creating a predictor see CreateAutoPredictor.
import boto3
forecast = boto3.client('forecast')
create_predictor_response = forecast.create_auto_predictor(
PredictorName = 'predictor_name
',
ForecastHorizon = 24,
ForecastFrequency = 'D',
DataConfig = {
"DatasetGroupArn": "arn:aws:forecast:region
:account
:dataset-group/datasetGroupName
"
},
MonitorConifg = {
"MonitorName": "MyMonitorName
"
}
)
Enabling Predictor
Monitoring for an Existing Predictor
You can enable predictor monitoring for an existing predictor with the console, AWS CLI, and AWS SDKs.
- Console
-
To enable predictor monitoring
Sign in to the AWS Management Console and open the Amazon Forecast console at https://console.aws.amazon.com/forecast/.
-
From Dataset groups, choose your dataset
group.
-
In the navigation pane, choose
Predictors.
-
Choose your predictor.
-
Navigate to the Monitoring tab.
-
In the Monitoring details section,
choose Start monitoring
When the Monitoring status is
Active, predictor monitoring is enabled. After you generate a forecast and then import more data, you can view the results of predictor monitoring. For
more information see Viewing Monitoring Results
- Python
-
To enable predictor monitoring for an existing predictor with the SDK for Python (Boto3),
use the create_monitor
method. Specify a name for the monitoring,
and for ResourceArn
specify the Amazon Resource Name (ARN) for the predictor to monitor. Use the describe_monitor
method and provide the monitor ARN to get the status
of the monitor.
After you generate a forecast and then import more data, you can view the results of predictor monitoring. For
more information see Viewing Monitoring Results.
For information on
required and optional parameters, see the CreateMonitor and DescribeMonitor.
import boto3
forecast = boto3.client('forecast')
create_monitor_response = forecast.create_monitor(
MonitorName = 'monitor_name
',
ResourceArn = 'arn:aws:forecast:region
:accountNumber
:predictor/predictorName
'
)
monitor_arn = create_monitor_response['MonitorArn']
describe_monitor_response = forecast.describe_monitor(
MonitorArn = monitor_arn
)
print("Monitor status: " + describe_monitor_response['Status'])