D'autres AWS SDK exemples sont disponibles dans le GitHub dépôt AWS Doc SDK Examples
Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
À utiliser StartDocumentTextDetection
avec un AWS SDK ou CLI
Les exemples de code suivants montrent comment utiliserStartDocumentTextDetection
.
- CLI
-
- AWS CLI
-
Pour commencer à détecter du texte dans un document de plusieurs pages
L'
start-document-text-detection
exemple suivant montre comment démarrer la détection asynchrone du texte dans un document de plusieurs pages.Linux/macOS :
aws textract start-document-text-detection \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleARN"
Windows :
aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Sortie :
{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }
Pour plus d'informations, consultez la section Détection et analyse du texte dans les documents de plusieurs pages du manuel Amazon Textract Developers Guide
-
Pour API plus de détails, voir StartDocumentTextDetection
la section Référence des AWS CLI commandes.
-
- Python
-
- SDKpour Python (Boto3)
-
Note
Il y en a plus à ce sujet GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS
. Lancez une tâche asynchrone pour détecter du texte dans un document.
class TextractWrapper: """Encapsulates Textract functions.""" def __init__(self, textract_client, s3_resource, sqs_resource): """ :param textract_client: A Boto3 Textract client. :param s3_resource: A Boto3 Amazon S3 resource. :param sqs_resource: A Boto3 Amazon SQS resource. """ self.textract_client = textract_client self.s3_resource = s3_resource self.sqs_resource = sqs_resource def start_detection_job( self, bucket_name, document_file_name, sns_topic_arn, sns_role_arn ): """ Starts an asynchronous job to detect text elements in an image stored in an Amazon S3 bucket. Textract publishes a notification to the specified Amazon SNS topic when the job completes. The image must be in PNG, JPG, or PDF format. :param bucket_name: The name of the Amazon S3 bucket that contains the image. :param document_file_name: The name of the document image stored in Amazon S3. :param sns_topic_arn: The Amazon Resource Name (ARN) of an Amazon SNS topic where the job completion notification is published. :param sns_role_arn: The ARN of an AWS Identity and Access Management (IAM) role that can be assumed by Textract and grants permission to publish to the Amazon SNS topic. :return: The ID of the job. """ try: response = self.textract_client.start_document_text_detection( DocumentLocation={ "S3Object": {"Bucket": bucket_name, "Name": document_file_name} }, NotificationChannel={ "SNSTopicArn": sns_topic_arn, "RoleArn": sns_role_arn, }, ) job_id = response["JobId"] logger.info( "Started text detection job %s on %s.", job_id, document_file_name ) except ClientError: logger.exception("Couldn't detect text in %s.", document_file_name) raise else: return job_id
-
Pour API plus de détails, reportez-vous StartDocumentTextDetectionà la section AWS SDKpour Python (Boto3) Reference. API
-
- SAP ABAP
-
- SDKpour SAP ABAP
-
Note
Il y en a plus à ce sujet GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS
. "Starts the asynchronous detection of text in a document." "Amazon Textract can detect lines of text and the words that make up a line of text." "Create an ABAP object for the Amazon S3 object." DATA(lo_s3object) = NEW /aws1/cl_texs3object( iv_bucket = iv_s3bucket iv_name = iv_s3object ). "Create an ABAP object for the document." DATA(lo_documentlocation) = NEW /aws1/cl_texdocumentlocation( io_s3object = lo_s3object ). "Start document analysis." TRY. oo_result = lo_tex->startdocumenttextdetection( io_documentlocation = lo_documentlocation ). DATA(lv_jobid) = oo_result->get_jobid( ). "oo_result is returned for testing purposes." MESSAGE 'Document analysis started.' TYPE 'I'. CATCH /aws1/cx_texaccessdeniedex. MESSAGE 'You do not have permission to perform this action.' TYPE 'E'. CATCH /aws1/cx_texbaddocumentex. MESSAGE 'Amazon Textract is not able to read the document.' TYPE 'E'. CATCH /aws1/cx_texdocumenttoolargeex. MESSAGE 'The document is too large.' TYPE 'E'. CATCH /aws1/cx_texidempotentprmmis00. MESSAGE 'Idempotent parameter mismatch exception.' TYPE 'E'. CATCH /aws1/cx_texinternalservererr. MESSAGE 'Internal server error.' TYPE 'E'. CATCH /aws1/cx_texinvalidkmskeyex. MESSAGE 'AWS KMS key is not valid.' TYPE 'E'. CATCH /aws1/cx_texinvalidparameterex. MESSAGE 'Request has non-valid parameters.' TYPE 'E'. CATCH /aws1/cx_texinvalids3objectex. MESSAGE 'Amazon S3 object is not valid.' TYPE 'E'. CATCH /aws1/cx_texlimitexceededex. MESSAGE 'An Amazon Textract service limit was exceeded.' TYPE 'E'. CATCH /aws1/cx_texprovthruputexcdex. MESSAGE 'Provisioned throughput exceeded limit.' TYPE 'E'. CATCH /aws1/cx_texthrottlingex. MESSAGE 'The request processing exceeded the limit.' TYPE 'E'. CATCH /aws1/cx_texunsupporteddocex. MESSAGE 'The document is not supported.' TYPE 'E'. ENDTRY.
-
Pour API plus de détails, voir StartDocumentTextDetection AWSSDKpour SAP ABAP API référence.
-