Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Utilisez le SageMakerEstimator dans un pipeline Spark
Vous pouvez utiliser les évaluateurs org.apache.spark.ml.Estimator
et les modèles org.apache.spark.ml.Model
, mais aussi les évaluateurs SageMakerEstimator
et les modèles SageMakerModel
dans les pipelines org.apache.spark.ml.Pipeline
, comme illustré dans l'exemple suivant :
import org.apache.spark.ml.Pipeline import org.apache.spark.ml.feature.PCA import org.apache.spark.sql.SparkSession import com.amazonaws.services.sagemaker.sparksdk.IAMRole import com.amazonaws.services.sagemaker.sparksdk.algorithms import com.amazonaws.services.sagemaker.sparksdk.algorithms.KMeansSageMakerEstimator val spark = SparkSession.builder.getOrCreate // load mnist data as a dataframe from libsvm val region = "us-east-1" val trainingData = spark.read.format("libsvm") .option("numFeatures", "784") .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/") val testData = spark.read.format("libsvm") .option("numFeatures", "784") .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/") // substitute your SageMaker IAM role here val roleArn = "arn:aws:iam::
account-id
:role/rolename
" val pcaEstimator = new PCA() .setInputCol("features") .setOutputCol("projectedFeatures") .setK(50) val kMeansSageMakerEstimator = new KMeansSageMakerEstimator( sagemakerRole = IAMRole(integTestingRole), requestRowSerializer = new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures"), trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures"), trainingInstanceType = "ml.p2.xlarge", trainingInstanceCount = 1, endpointInstanceType = "ml.c4.xlarge", endpointInitialInstanceCount = 1) .setK(10).setFeatureDim(50) val pipeline = new Pipeline().setStages(Array(pcaEstimator, kMeansSageMakerEstimator)) // train val pipelineModel = pipeline.fit(trainingData) val transformedData = pipelineModel.transform(testData) transformedData.show()
Le paramètre trainingSparkDataFormatOptions
configure Spark pour qu'il sérialise dans protobuf la colonne « projectedFeatures » pour l'entraînement du modèle. En outre, Spark sérialise au format protobuf la colonne « label » par défaut.
Comme nous voulons faire des déductions à l'aide de la colonne projectedFeatures « », nous passons le nom de la colonne auProtobufRequestRowSerializer
.
L'exemple suivant présente un DataFrame
transformé :
+-----+--------------------+--------------------+-------------------+---------------+ |label| features| projectedFeatures|distance_to_cluster|closest_cluster| +-----+--------------------+--------------------+-------------------+---------------+ | 5.0|(784,[152,153,154...|[880.731433034386...| 1500.470703125| 0.0| | 0.0|(784,[127,128,129...|[1768.51722024166...| 1142.18359375| 4.0| | 4.0|(784,[160,161,162...|[704.949236329314...| 1386.246826171875| 9.0| | 1.0|(784,[158,159,160...|[-42.328192193771...| 1277.0736083984375| 5.0| | 9.0|(784,[208,209,210...|[374.043902028333...| 1211.00927734375| 3.0| | 2.0|(784,[155,156,157...|[941.267714528850...| 1496.157958984375| 8.0| | 1.0|(784,[124,125,126...|[30.2848596410594...| 1327.6766357421875| 5.0| | 3.0|(784,[151,152,153...|[1270.14374062052...| 1570.7674560546875| 0.0| | 1.0|(784,[152,153,154...|[-112.10792566485...| 1037.568359375| 5.0| | 4.0|(784,[134,135,161...|[452.068280676606...| 1165.1236572265625| 3.0| | 3.0|(784,[123,124,125...|[610.596447285397...| 1325.953369140625| 7.0| | 5.0|(784,[216,217,218...|[142.959601818422...| 1353.4930419921875| 5.0| | 3.0|(784,[143,144,145...|[1036.71862533658...| 1460.4315185546875| 7.0| | 6.0|(784,[72,73,74,99...|[996.740157435754...| 1159.8631591796875| 2.0| | 1.0|(784,[151,152,153...|[-107.26076167417...| 960.963623046875| 5.0| | 7.0|(784,[211,212,213...|[619.771820430940...| 1245.13623046875| 6.0| | 2.0|(784,[151,152,153...|[850.152101817161...| 1304.437744140625| 8.0| | 8.0|(784,[159,160,161...|[370.041887230547...| 1192.4781494140625| 0.0| | 6.0|(784,[100,101,102...|[546.674328209335...| 1277.0908203125| 2.0| | 9.0|(784,[209,210,211...|[-29.259112927426...| 1245.8182373046875| 6.0| +-----+--------------------+--------------------+-------------------+---------------+