Réglage d'un modèle IP Insights - Amazon SageMaker

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Réglage d'un modèle IP Insights

Le réglage de modèle automatique , ou réglage d'hyperparamètre, détecte la meilleure version d'un modèle en exécutant plusieurs tâches qui testent une plage d'hyperparamètres sur votre ensemble de données. Vous choisissez les hyperparamètres réglables, une plage de valeurs pour chacun d'eux et une métrique d'objectif. Vous choisissez la métrique d'objectif parmi les métriques que calcule l'algorithme. Le réglage de modèle automatique recherche parmi les hyperparamètres choisis la combinaison de valeurs qui produira un modèle permettant d'optimiser la métrique d'objectif.

Pour plus d'informations sur le réglage de modèle, consultez Réglage automatique du modèle avec SageMaker.

Métriques calculées par l'algorithme IP Insights

L'algorithme Amazon SageMaker IP Insights est un algorithme d'apprentissage non supervisé qui apprend les associations entre les adresses IP et les entités. L'algorithme entraîne un modèle discriminateur, qui apprend à séparer les points de données observés (échantillons positifs) à partir de points de données générés de façon aléatoire (échantillons négatifs). Le réglage de modèle automatique de l'algorithme IP Insights permet de rechercher le modèle capable de distinguer de la manière la plus précise possible les données de validation non étiquetées et les échantillons négatifs générés automatiquement. La précision du modèle de l'ensemble de données de validation est mesurée d'après l'aire située sous la courbe ROC. Cette métrique validation:discriminator_auc accepte des valeurs comprises entre 0 et 1, où 1 correspond à une précision parfaite.

L'algorithme IP Insights calcule une métrique validation:discriminator_auc pendant la validation, dont la valeur est utilisée comme fonction objective à optimiser pour le réglage des hyperparamètres.

Nom de la métrique Description Orientation de l'optimisation
validation:discriminator_auc

Aire située sous la courbe ROC sur l'ensemble de données de validation. L'ensemble de données de validation n'est pas étiqueté. La métrique AUC (aire située sous la courbe) décrit la capacité du modèle à distinguer les points de données de validation des points de données générés de façon aléatoire.

Agrandir

Hyperparamètres IP Insights réglables

Vous pouvez régler les hyperparamètres suivants pour l'algorithme SageMaker IP Insights.

Nom du paramètre Type de paramètre Plages recommandées
epochs

IntegerParameterRange

MinValue: 1, MaxValue 100

learning_rate

ContinuousParameterRange

MinValue: 1e-4, MaxValue : 0,1

mini_batch_size

IntegerParameterRanges

MinValue: 100, MaxValue 50 000

num_entity_vectors

IntegerParameterRanges

MinValue: 10000, MaxValue 1000000

num_ip_encoder_layers

IntegerParameterRanges

MinValue: 1, MaxValue 10

random_negative_sampling_rate

IntegerParameterRanges

MinValue: 0, MaxValue 10

shuffled_negative_sampling_rate

IntegerParameterRanges

MinValue: 0, MaxValue 10

vector_dim

IntegerParameterRanges

MinValue: 8, MaxValue 256

weight_decay

ContinuousParameterRange

MinValue: 0,0, MaxValue 1,0