Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.
Détection du texte de document avec Amazon Textract
Pour détecter du texte dans un document, vous utilisez leDetectDocumentTextet transmettez un fichier de document en entrée.DetectDocumentText
renvoie une structure JSON contenant des lignes et des mots de texte détecté, l'emplacement du texte dans le document et les relations entre le texte détecté. Pour plus d'informations, consultez Détection de texte.
Vous pouvez fournir un document d'entrée sous la forme d'un tableau d'octets d'image (octets d'image encodés en base64) ou en tant qu'objet Amazon S3. Dans cette procédure, vous chargez un fichier image dans votre compartiment S3 et spécifiez le nom du fichier.
Pour détecter du texte dans un document (API)
Si vous ne l'avez pas déjà fait :
Créer ou mettre à jour un utilisateur IAM avec
AmazonTextractFullAccess
etAmazonS3ReadOnlyAccess
Autorisations. Pour plus d'informations, consultez Étape 1 : Configuration d'un compte AWS et création d'un utilisateur IAM.Installez et configurez l'AWS CLI et les kits SDK AWS. Pour plus d'informations, consultez Étape 2 : Configuration de l'AWS CLIetAWSKits SDK.
-
Chargez un document dans votre compartiment S3.
Pour obtenir des instructions, consultezChargement d'objets dans Amazon S3dans leManuel de l'utilisateur Amazon Simple Storage Service.
-
Utilisez les exemples suivants pour appeler l'opération
DetectDocumentText
.- Java
-
L'exemple de code suivant affiche le document et les zones autour des lignes de texte détecté.
Dans la fonction
main
, remplacez les valeurs debucket
etdocument
avec les noms du compartiment Amazon S3 et du document utilisés à l'étape 2.//Calls DetectDocumentText. //Loads document from S3 bucket. Displays the document and bounding boxes around detected lines/words of text. package com.amazonaws.samples; import java.awt.*; import java.awt.image.BufferedImage; import java.util.List; import javax.imageio.ImageIO; import javax.swing.*; import com.amazonaws.services.s3.AmazonS3; import com.amazonaws.services.s3.AmazonS3ClientBuilder; import com.amazonaws.services.s3.model.S3ObjectInputStream; import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.BoundingBox; import com.amazonaws.services.textract.model.DetectDocumentTextRequest; import com.amazonaws.services.textract.model.DetectDocumentTextResult; import com.amazonaws.services.textract.model.Document; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.Point; import com.amazonaws.services.textract.model.Relationship; public class DocumentText extends JPanel { private static final long serialVersionUID = 1L; BufferedImage image; DetectDocumentTextResult result; public DocumentText(DetectDocumentTextResult documentResult, BufferedImage bufImage) throws Exception { super(); result = documentResult; // Results of text detection. image = bufImage; // The image containing the document. } // Draws the image and text bounding box. public void paintComponent(Graphics g) { int height = image.getHeight(this); int width = image.getWidth(this); Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g. // Draw the image. g2d.drawImage(image, 0, 0, image.getWidth(this) , image.getHeight(this), this); // Iterate through blocks and display polygons around lines of detected text. List<Block> blocks = result.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); if ((block.getBlockType()).equals("LINE")) { ShowPolygon(height, width, block.getGeometry().getPolygon(), g2d); /* ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d); */ } else { // its a word, so just show vertical lines. ShowPolygonVerticals(height, width, block.getGeometry().getPolygon(), g2d); } } } // Show bounding box at supplied location. private void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box, Graphics2D g2d) { float left = imageWidth * box.getLeft(); float top = imageHeight * box.getTop(); // Display bounding box. g2d.setColor(new Color(0, 212, 0)); g2d.drawRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.getWidth()), Math.round(imageHeight * box.getHeight())); } // Shows polygon at supplied location private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 0, 0)); Polygon polygon = new Polygon(); // Construct polygon and display for (Point point : points) { polygon.addPoint((Math.round(point.getX() * imageWidth)), Math.round(point.getY() * imageHeight)); } g2d.drawPolygon(polygon); } // Draws only the vertical lines in the supplied polygon. private void ShowPolygonVerticals(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 212, 0)); Object[] parry = points.toArray(); g2d.setStroke(new BasicStroke(2)); g2d.drawLine(Math.round(((Point) parry[0]).getX() * imageWidth), Math.round(((Point) parry[0]).getY() * imageHeight), Math.round(((Point) parry[3]).getX() * imageWidth), Math.round(((Point) parry[3]).getY() * imageHeight)); g2d.setColor(new Color(255, 0, 0)); g2d.drawLine(Math.round(((Point) parry[1]).getX() * imageWidth), Math.round(((Point) parry[1]).getY() * imageHeight), Math.round(((Point) parry[2]).getX() * imageWidth), Math.round(((Point) parry[2]).getY() * imageHeight)); } //Displays information from a block returned by text detection and text analysis private void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println(" Detected text: " + block.getText()); System.out.println(" Type: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println(" Confidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println(" Cell information:"); System.out.println(" Column: " + block.getColumnIndex()); System.out.println(" Row: " + block.getRowIndex()); System.out.println(" Column span: " + block.getColumnSpan()); System.out.println(" Row span: " + block.getRowSpan()); } System.out.println(" Relationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println(" Type: " + relationship.getType()); System.out.println(" IDs: " + relationship.getIds().toString()); } } else { System.out.println(" No related Blocks"); } System.out.println(" Geometry"); System.out.println(" Bounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println(" Polygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println(" Entity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println(" Entity Type: " + entityType); } } else { System.out.println(" No entity type"); } if(block.getPage()!=null) System.out.println(" Page: " + block.getPage()); System.out.println(); } public static void main(String arg[]) throws Exception { // The S3 bucket and document String document = ""; String bucket = ""; AmazonS3 s3client = AmazonS3ClientBuilder.standard() .withEndpointConfiguration( new EndpointConfiguration("https://s3.amazonaws.com","us-east-1")) .build(); // Get the document from S3 com.amazonaws.services.s3.model.S3Object s3object = s3client.getObject(bucket, document); S3ObjectInputStream inputStream = s3object.getObjectContent(); BufferedImage image = ImageIO.read(inputStream); // Call DetectDocumentText EndpointConfiguration endpoint = new EndpointConfiguration( "https://textract.us-east-1.amazonaws.com", "us-east-1"); AmazonTextract client = AmazonTextractClientBuilder.standard() .withEndpointConfiguration(endpoint).build(); DetectDocumentTextRequest request = new DetectDocumentTextRequest() .withDocument(new Document().withS3Object(new S3Object().withName(document).withBucket(bucket))); DetectDocumentTextResult result = client.detectDocumentText(request); // Create frame and panel. JFrame frame = new JFrame("RotateImage"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); DocumentText panel = new DocumentText(result, image); panel.setPreferredSize(new Dimension(image.getWidth() , image.getHeight() )); frame.setContentPane(panel); frame.pack(); frame.setVisible(true); } }
- AWS CLI
-
Cette commande de l'AWS CLI affiche la sortie JSON pour l'opération
detect-document-text
de l'interface de ligne de commande (CLI).Remplacez les valeurs de
Bucket
etName
avec les noms du compartiment Amazon S3 et du document utilisés à l'étape 2.aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"
bucket
","Name":"document
"}}' - Python
-
L'exemple de code suivant affiche le document et les zones autour des lignes de texte détectées.
Dans la fonction
main
, remplacez les valeurs debucket
etdocument
avec les noms du compartiment Amazon S3 et du document utilisés à l'étape 2.#Detects text in a document stored in an S3 bucket. Display polygon box around text and angled text import boto3 import io from io import BytesIO import sys import psutil import time import math from PIL import Image, ImageDraw, ImageFont # Displays information about a block returned by text detection and text analysis def DisplayBlockInformation(block): print('Id: {}'.format(block['Id'])) if 'Text' in block: print(' Detected: ' + block['Text']) print(' Type: ' + block['BlockType']) if 'Confidence' in block: print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") if block['BlockType'] == 'CELL': print(" Cell information") print(" Column: " + str(block['ColumnIndex'])) print(" Row: " + str(block['RowIndex'])) print(" ColumnSpan: " + str(block['ColumnSpan'])) print(" RowSpan: " + str(block['RowSpan'])) if 'Relationships' in block: print(' Relationships: {}'.format(block['Relationships'])) print(' Geometry: ') print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print(' Polygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == "KEY_VALUE_SET": print (' Entity Type: ' + block['EntityTypes'][0]) if 'Page' in block: print('Page: ' + block['Page']) print() def process_text_detection(bucket, document): #Get the document from S3 s3_connection = boto3.resource('s3') s3_object = s3_connection.Object(bucket,document) s3_response = s3_object.get() stream = io.BytesIO(s3_response['Body'].read()) image=Image.open(stream) # Detect text in the document client = boto3.client('textract') #process using image bytes #image_binary = stream.getvalue() #response = client.detect_document_text(Document={'Bytes': image_binary}) #process using S3 object response = client.detect_document_text( Document={'S3Object': {'Bucket': bucket, 'Name': document}}) #Get the text blocks blocks=response['Blocks'] width, height =image.size draw = ImageDraw.Draw(image) print ('Detected Document Text') # Create image showing bounding box/polygon the detected lines/text for block in blocks: print('Type: ' + block['BlockType']) if block['BlockType'] != 'PAGE': print('Detected: ' + block['Text']) print('Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") print('Id: {}'.format(block['Id'])) if 'Relationships' in block: print('Relationships: {}'.format(block['Relationships'])) print('Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print('Polygon: {}'.format(block['Geometry']['Polygon'])) print() draw=ImageDraw.Draw(image) # Draw WORD - Green - start of word, red - end of word if block['BlockType'] == "WORD": draw.line([(width * block['Geometry']['Polygon'][0]['X'], height * block['Geometry']['Polygon'][0]['Y']), (width * block['Geometry']['Polygon'][3]['X'], height * block['Geometry']['Polygon'][3]['Y'])],fill='green', width=2) draw.line([(width * block['Geometry']['Polygon'][1]['X'], height * block['Geometry']['Polygon'][1]['Y']), (width * block['Geometry']['Polygon'][2]['X'], height * block['Geometry']['Polygon'][2]['Y'])], fill='red', width=2) # Draw box around entire LINE if block['BlockType'] == "LINE": points=[] for polygon in block['Geometry']['Polygon']: points.append((width * polygon['X'], height * polygon['Y'])) draw.polygon((points), outline='black') # Uncomment to draw bounding box #box=block['Geometry']['BoundingBox'] #left = width * box['Left'] #top = height * box['Top'] #draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],outline='black') # Display the image image.show() # display image for 10 seconds return len(blocks) def main(): bucket = '' document = '' block_count=process_text_detection(bucket,document) print("Blocks detected: " + str(block_count)) if __name__ == "__main__": main()
- Node.js
-
L'exemple de code Node.js suivant affiche le document et les cases autour des lignes de texte détectées, affichant une image des résultats dans le répertoire à partir de lequel vous exécutez le code. Il utilise le
image-size
etimages
paquets.Dans la fonction
main
, remplacez les valeurs debucket
etdocument
avec les noms du compartiment Amazon S3 et du document utilisés à l'étape 2. Remplacez la valeur deregionConfig
avec le nom de la région dans laquelle se trouve votre compte.async function main(){ // Import AWS const AWS = require("aws-sdk") // Use Image-Size to get const sizeOf = require('image-size'); // Image tool to draw buffers const images = require("images"); // Create a canvas and get the context const { createCanvas } = require('canvas') const canvas = createCanvas(200, 200) const ctx = canvas.getContext('2d') // Set variables const bucket = 'bucket-name' // the s3 bucket name const photo = 'image-name' // the name of file const regionConfig = 'region' // Set region if needed AWS.config.update({region:regionConfig}); // Connect to Textract const client = new AWS.Textract(); // Connect to S3 to display image const s3 = new AWS.S3(); // Define paramaters const params = { Document: { S3Object: { Bucket: bucket, Name: photo }, }, } // Function to display image async function getImage(){ const imageData = s3.getObject( { Bucket: bucket, Key: photo } ).promise(); return imageData; } // get image var imageData = await getImage() // Get the height, width of the image const dimensions = sizeOf(imageData.Body) const width = dimensions.width const height = dimensions.height console.log(imageData.Body) console.log(width, height) canvas.width = width; canvas.height = height; try{ // Call API and log response const res = await client.detectDocumentText(params).promise(); var image = images(imageData.Body).size(width, height) //console.log the type of block, text, text type, and confidence res.Blocks.forEach(block => { console.log(`Block Type: ${block.BlockType}`), console.log(`Text: ${block.Text}`) console.log(`TextType: ${block.TextType}`) console.log(`Confidence: ${block.Confidence}`) // Draw box around detected text using polygons ctx.strokeStyle = 'rgba(0,0,0,0.5)'; ctx.beginPath(); block.Geometry.Polygon.forEach(({X, Y}) => ctx.lineTo(width * X - 10, height * Y - 10) ); ctx.closePath(); ctx.stroke(); console.log("-----") }) // render image var buffer = canvas.toBuffer("image/png"); image.draw(images(buffer), 10, 10) image.save("output-image.jpg"); } catch (err){ console.error(err);} } main()
Exécutez l'exemple. Les exemples Python et Java affichent l'image du document. Une boîte noire entoure chaque ligne de texte détectée. Une ligne verticale verte est le début d'un mot détecté. Une ligne verticale rouge est la fin d'un mot détecté. LeAWS CLIl'exemple de l'affiche uniquement la sortie JSON pour le
DetectDocumentText
.