Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Medical imaging - Healthcare Industry Lens
Cette page n'a pas été traduite dans votre langue. Demande de traduction

Medical imaging

Medical imaging in healthcare spans diagnostic medical imaging, digital pathology, dental imaging, and related applications. Medical imaging systems enable workflows anchored in the generation, storage, and analysis of medical imaging study data. The data is commonly generated by medical imaging hardware, like CT scanners, magnetic resonance imaging (MRI) machines, and ultrasound devices, and may be stored in picture archiving and communication systems (PACS) or vendor neutral archives (VNA). There is also secondary use of medical imaging data for non-clinical workloads, such as medical research or development of new medical devices.

Characteristics of medical imaging architectures include:

  • Imaging study data is generated by on-premises modalities, durably stored by PACS and VNA solutions, and maintained highly available for immediate retrieval by radiologists and other end users. Solution end users, like radiologists, likely expect low latency retrievals of new and old imaging studies.

  • An imaging study will likely be accessed several times shortly after ingestion, and tends to be accessed less frequently with age. Regulatory requirements may dictate that studies be retained for several years, and operators may decide to keep studies in perpetuity.

  • The imaging scanners, physicians, technicians, and radiologists may be located at the same physical site. Or, cross-site collaboration and outsourced radiology services may extend workflows across multiple care settings.

  • Medical imaging systems commonly interoperate with other provider systems, like EHRs, though data integrations.

  • Medical imaging study data is often stored and transmitted using the DICOM standard. This standard covers both a network protocol and file format definitions.

  • Some medical imaging solutions, such PACS, may fall under regulatory control, such as GxP regulation in the US. Machine learning algorithms that aid in diagnoses may also fall under regulatory control. Determine which, if any, regulatory controls are applicable to your solutions.

  • Data processing, provider workflows, and end user interfaces may leverage AI to improve care quality and boost productivity. Example applications include computer vision applied to detect disease in medical images, and NLP applied to support report authoring.

  • A high-level overview of the medical imaging workflow is shown in figure 3.

Diagram showing the medical imaging workflow.

A representative medical imaging workflow.

Rubrique suivante :

Reference architecture

Rubrique précédente :

Questions
ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.