Class: Aws::SageMaker::Types::ModelPackageContainerDefinition

Inherits:
Struct
  • Object
show all
Defined in:
gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb

Overview

Describes the Docker container for the model package.

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#additional_s3_data_sourceTypes::AdditionalS3DataSource

The additional data source that is used during inference in the Docker container for your model package.



38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#container_hostnameString

The DNS host name for the Docker container.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#environmentHash<String,String>

The environment variables to set in the Docker container. Each key and value in the Environment string to string map can have length of up to 1024. We support up to 16 entries in the map.

Returns:

  • (Hash<String,String>)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#frameworkString

The machine learning framework of the model package container image.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#framework_versionString

The framework version of the Model Package Container Image.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#imageString

The Amazon Elastic Container Registry (Amazon ECR) path where inference code is stored.

If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#image_digestString

An MD5 hash of the training algorithm that identifies the Docker image used for training.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#model_data_etagString

The ETag associated with Model Data URL.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#model_data_sourceTypes::ModelDataSource

Specifies the location of ML model data to deploy during endpoint creation.



38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#model_data_urlString

The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

The model artifacts must be in an S3 bucket that is in the same region as the model package.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#model_inputTypes::ModelInput

A structure with Model Input details.

Returns:



38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#nearest_model_nameString

The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end

#product_idString

The Amazon Web Services Marketplace product ID of the model package.

Returns:

  • (String)


38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 38130

class ModelPackageContainerDefinition < Struct.new(
  :container_hostname,
  :image,
  :image_digest,
  :model_data_url,
  :model_data_source,
  :product_id,
  :environment,
  :model_input,
  :framework,
  :framework_version,
  :nearest_model_name,
  :additional_s3_data_source,
  :model_data_etag)
  SENSITIVE = []
  include Aws::Structure
end