Ada lebih banyak AWS SDK contoh yang tersedia di GitHub repo SDKContoh AWS Dokumen
Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Contoh Amazon Texttract menggunakan AWS CLI
Contoh kode berikut menunjukkan cara melakukan tindakan dan menerapkan skenario umum dengan menggunakan Amazon Textract. AWS Command Line Interface
Tindakan adalah kutipan kode dari program yang lebih besar dan harus dijalankan dalam konteks. Sementara tindakan menunjukkan cara memanggil fungsi layanan individual, Anda dapat melihat tindakan dalam konteks dalam skenario terkait.
Setiap contoh menyertakan tautan ke kode sumber lengkap, di mana Anda dapat menemukan instruksi tentang cara mengatur dan menjalankan kode dalam konteks.
Topik
Tindakan
Contoh kode berikut menunjukkan cara menggunakananalyze-document
.
- AWS CLI
-
Untuk menganalisis teks dalam dokumen
analyze-document
Contoh berikut menunjukkan cara menganalisis teks dalam dokumen.Linux/macOS:
aws textract analyze-document \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
'Windows:
aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region
region-name
Output:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }
Untuk informasi selengkapnya, lihat Menganalisis Teks Dokumen dengan Amazon Ttract di Panduan Pengembang Amazon Texttract
-
Untuk API detailnya, lihat AnalyzeDocument
di Referensi AWS CLI Perintah.
-
Contoh kode berikut menunjukkan cara menggunakandetect-document-text
.
- AWS CLI
-
Untuk mendeteksi teks dalam dokumen
Berikut
detect-document-text
ini Contoh berikut menunjukkan cara mendeteksi teks dalam dokumen.Linux/macOS:
aws textract detect-document-text \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
'Windows:
aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
Output:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }
Untuk informasi selengkapnya, lihat Mendeteksi Teks Dokumen dengan Amazon Textract di Panduan Pengembang Amazon Textract
-
Untuk API detailnya, lihat DetectDocumentText
di Referensi AWS CLI Perintah.
-
Contoh kode berikut menunjukkan cara menggunakanget-document-analysis
.
- AWS CLI
-
Untuk mendapatkan hasil analisis teks asinkron dari dokumen multi-halaman
get-document-analysis
Contoh berikut menunjukkan cara mendapatkan hasil analisis teks asinkron dari dokumen multi-halaman.aws textract get-document-analysis \ --job-id
df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b
\ --max-results1000
Output:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
Untuk informasi selengkapnya, lihat Mendeteksi dan Menganalisis Teks dalam Dokumen Multi-Halaman di Panduan Pengembang Amazon Texttract
-
Untuk API detailnya, lihat GetDocumentAnalysis
di Referensi AWS CLI Perintah.
-
Contoh kode berikut menunjukkan cara menggunakanget-document-text-detection
.
- AWS CLI
-
Untuk mendapatkan hasil deteksi teks asinkron dalam dokumen multi-halaman
get-document-text-detection
Contoh berikut menunjukkan cara mendapatkan hasil deteksi teks asinkron dalam dokumen multi-halaman.aws textract get-document-text-detection \ --job-id
57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9
\ --max-results1000
Output
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
Untuk informasi selengkapnya, lihat Mendeteksi dan Menganalisis Teks dalam Dokumen Multi-Halaman di Panduan Pengembang Amazon Texttract
-
Untuk API detailnya, lihat GetDocumentTextDetection
di Referensi AWS CLI Perintah.
-
Contoh kode berikut menunjukkan cara menggunakanstart-document-analysis
.
- AWS CLI
-
Untuk mulai menganalisis teks dalam dokumen multi-halaman
start-document-analysis
Contoh berikut menunjukkan bagaimana memulai analisis asinkron teks dalam dokumen multi-halaman.Linux/macOS:
aws textract start-document-analysis \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Windows:
aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Output:
{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }
Untuk informasi selengkapnya, lihat Mendeteksi dan Menganalisis Teks dalam Dokumen Multi-Halaman di Panduan Pengembang Amazon Texttract
-
Untuk API detailnya, lihat StartDocumentAnalysis
di Referensi AWS CLI Perintah.
-
Contoh kode berikut menunjukkan cara menggunakanstart-document-text-detection
.
- AWS CLI
-
Untuk mulai mendeteksi teks dalam dokumen multi-halaman
start-document-text-detection
Contoh berikut menunjukkan bagaimana memulai deteksi asinkron teks dalam dokumen multi-halaman.Linux/macOS:
aws textract start-document-text-detection \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleARN"
Windows:
aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Output:
{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }
Untuk informasi selengkapnya, lihat Mendeteksi dan Menganalisis Teks dalam Dokumen Multi-Halaman di Panduan Pengembang Amazon Texttract
-
Untuk API detailnya, lihat StartDocumentTextDetection
di Referensi AWS CLI Perintah.
-