Membuat file manifes Lookout for Vision menggunakan SDK AWS - AWS Contoh Kode SDK

Ada lebih banyak contoh AWS SDK yang tersedia di repo Contoh SDK AWS Doc. GitHub

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Membuat file manifes Lookout for Vision menggunakan SDK AWS

Contoh kode berikut menunjukkan cara membuat file manifes Lookout for Vision dan mengunggahnya ke Amazon S3.

Untuk informasi selengkapnya, lihat Membuat file manifes.

Python
SDK untuk Python (Boto3)
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

class Datasets: @staticmethod def create_manifest_file_s3(s3_resource, image_s3_path, manifest_s3_path): """ Creates a manifest file and uploads to Amazon S3. :param s3_resource: A Boto3 Amazon S3 resource. :param image_s3_path: The Amazon S3 path to the images referenced by the manifest file. The images must be in an Amazon S3 bucket with the following folder structure. s3://amzn-s3-demo-bucket/<train or test>/ normal/ anomaly/ Place normal images in the normal folder and anomalous images in the anomaly folder. :param manifest_s3_path: The Amazon S3 location in which to store the created manifest file. """ output_manifest_file = "temp.manifest" try: # Current date and time in manifest file format. dttm = datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f") # Get bucket and folder from image and manifest file paths. bucket, prefix = image_s3_path.replace("s3://", "").split("/", 1) if prefix[-1] != "/": prefix += "/" manifest_bucket, manifest_prefix = manifest_s3_path.replace( "s3://", "" ).split("/", 1) with open(output_manifest_file, "w") as mfile: logger.info("Creating manifest file") src_bucket = s3_resource.Bucket(bucket) # Create JSON lines for anomalous images. for obj in src_bucket.objects.filter( Prefix=prefix + "anomaly/", Delimiter="/" ): image_path = f"s3://{src_bucket.name}/{obj.key}" manifest = Datasets.create_json_line(image_path, "anomaly", dttm) mfile.write(json.dumps(manifest) + "\n") # Create json lines for normal images. for obj in src_bucket.objects.filter( Prefix=prefix + "normal/", Delimiter="/" ): image_path = f"s3://{src_bucket.name}/{obj.key}" manifest = Datasets.create_json_line(image_path, "normal", dttm) mfile.write(json.dumps(manifest) + "\n") logger.info("Uploading manifest file to %s", manifest_s3_path) s3_resource.Bucket(manifest_bucket).upload_file( output_manifest_file, manifest_prefix ) except ClientError: logger.exception("Error uploading manifest.") raise except Exception: logger.exception("Error uploading manifest.") raise else: logger.info("Completed manifest file creation and upload.") finally: try: os.remove(output_manifest_file) except FileNotFoundError: pass @staticmethod def create_json_line(image, class_name, dttm): """ Creates a single JSON line for an image. :param image: The S3 location for the image. :param class_name: The class of the image (normal or anomaly) :param dttm: The date and time that the JSON is created. """ label = 0 if class_name == "normal": label = 0 elif class_name == "anomaly": label = 1 else: logger.error("Unexpected label value: %s for %s", label, image) raise Exception(f"Unexpected label value: {label} for {image}") manifest = { "source-ref": image, "anomaly-label": label, "anomaly-label-metadata": { "confidence": 1, "job-name": "labeling-job/anomaly-label", "class-name": class_name, "human-annotated": "yes", "creation-date": dttm, "type": "groundtruth/image-classification", }, } return manifest